
Mobile Jailbreaking Cheat Sheet
What is "jailbreaking", "rooting" and "unlocking"?
Jailbreaking, rooting and unlocking are the processes of gaining unauthorized access or elevated
privileges on a system. The terms are different between operating system, and the differences in
terminology reflect the differences in security models used by the operating systems vendors.

For iOS, Jailbreaking is the process of modifying iOS system kernels to allow file system read and
write access. Most jailbreaking tools (and exploits) remove the limitations and security features
built by the manufacturer Apple (the "jail") through the use of custom kernels, which make
unauthorized modifications to the operating system. Almost all jailbreaking tools allow users to run
code not approved and signed by Apple. This allows users to install additional applications,
extensions and patches outside the control of Apple’s App Store.

On Android, Rooting is the process of gaining administrative or privileged access for the Android
OS. As the Android OS is based on the Linux Kernel, rooting a device is analogous to gaining
access to administrative, root user-equivalent, permissions on Linux. Unlike iOS, rooting is
(usually) not required to run applications outside from the Android Market. Some carriers control
this through operating system settings or device firmware. Rooting also enables the user to
completely remove and replace the device's operating system.

On Windows Phone OS, Unlocking is the process of editing specific keys of the Windows Phone
OS registry or modifying the underlying platform to allow the execution of applications that are not
certified by Microsoft or that use reserved capabilities. Different levels of unlocking exist
depending on the OS and device version:

• Developer-unlock: Microsoft allows Independent Software Vendors (ISV) to unlock their
systems to sideload and test homebrew apps onto physical devices, before their submission
to the Store. Developer-unlock only allows to sideload applications that are not signed by
the Windows Phone Store approval process and it is often a pre-condition to achieve a
higher level of unlock (e.g., interop-unlock). A developer-unlocked device does not allow an
app to escape its sandbox or tweak the system via registry editing. Windows Phone devices
can be officially developer-unlocked for free using utilities provided by Microsoft;

• Interop-unlock: with the release of Windows Phone 7.5 Mango (7.10.7720.68), Microsoft
introduced a new platform security feature, called Interop Lock, which restricted the access
to drivers only to apps with the Interop Services capability
(ID_CAP_INTEROPSERVICES). Moreover, Mango denies the sideloading of unsigned
apps with that capability, thus limiting drivers’ access to Windows Phone Store certified
apps only. Heathcliff74, the mind behind the WP7 Root Tools suite, researched the topic
and found that by manipulating the value of the MaxUnsignedApp registry key
(HKLM\Software\Microsoft\DeviceReg\Install\MaxUnsignedApp) it is possible to
control the unlocking level of a Windows Phone device. A value between 1 and 299 means
that the device is developer-unlocked, while a value equal or greater than 300 removes the
restriction to sideload apps with the ID_CAP_INTEROPSERVICES capability, allowing
apps to access restricted file system areas and registry editing, thanks to the use of high-
privileged app capabilities. It has been hypothesized that the “magic number” involved in
the MaxUnsignedApp register key is a feature introduced by Microsoft for OEMs and so at
times referred to as OEM developer-unlock. It should be noted that typically the interop-

unlock by itself does not enable all of the system’s available capabilities – condition that is
also knows as Capabilities-unlock;

• Full-unlock: full-unlock aims at disabling a subset or all of the security mechanisms
implemented by the OS to allow full access and the customization of the system (e.g., file
system and registry unlimited access). Full-unlocking is usually achieved with custom
ROMs flashing, where the OS binaries are patched to disable the OS security features, such
as policy-checks. In a full-unlocked environment, apps are likely to be able to escape their
sandbox because they can be run with elevated privileges.

Why do they occur?
iOS: many users are lured into jailbreaking to take advantage of apps made available through third
party app sources, such as Cydia, which are otherwise banned or not approved by Apple. There is
an inherent risk in installing such applications as they are not quality controlled nor have they gone
through the Apple approval and application approval process. Hence, they may contain vulnerable
or malicious code that could allow the device to be compromised. Alternately, jailbreaking can
allow users to enhance some built in functions on their device. For example, a jailbroken phone can
be used with a different carrier than the one it was configured with, FaceTime can be used over a
3G connection, or the phone can be unlocked to be used internationally. More technically savvy
users also perform jailbreaking to enable user interface customizations, preferences and features not
available through the normal software interface. Typically, these functionalities are achieved by
patching specific binaries in the operating system. A debated purpose for jailbreaking in the iOS
community is for installing pirated iOS applications. Jailbreaking proponents discourage this use,
such as Cydia warning users of pirated software when they add a pirated software repository.
However, repositories such as Hackulous promote pirated applications and the tools to pirate and
distribute applications.

Android: rooting Android devices allows users to gain access to additional hardware rights, backup
utilities and direct hardware access. Additionally, rooting allows users to remove the pre-installed
"bloatware", additional features that many carriers or manufacturers put onto devices, which can
use considerable amounts of disk space and memory. Most users root their device to leverage a
custom Read Only Memory (ROM) developed by the Android Community, which brings distinctive
capabilities that are not available through the official ROMs installed by the carriers. Custom
ROMs also provide users an option to 'upgrade' the operating system and optimize the phone
experience by giving users access to features, such as tethering, that are normally blocked or limited
by carriers.

Windows Phone OS: Windows Phone users generally unlock their devices to tweak their systems
and to be able to sideload homebrew apps. Depending on the level of unlocking, the OS can be
customized in term of store OEM settings, native code execution, themes, ringtones or the ability to
sideload apps that are not signed or that use capabilities normally reserved to Microsoft or OEMs.
Developers unlock their devices to test their products on real systems, before the submission to the
Store. An interop-unlocked device allows users to access file system areas where Store apps are
installed, thus allowing DLL extraction, reverse engineering and app cracking.

What are the common tools used?
iOS: jailbreaking software can be categorized into two main groups:

1. Tethered: requires the device to be connected to a system to bypass the iBoot signature
check for iOS devices. The iOS device needs to be connected or tethered to a computer
system every time it has to reboot in order to access the jailbreak application, such as
redsn0w, and boot correctly;

2. Un-tethered: requires connection for the initial jailbreak process and then all the software,
such as sn0wbreeze, is on the device for future un-tethered reboots, without losing the
jailbreak or the functionality of the phone.

Some common, but not all of the iOS jailbreaking tools are listed below:

• Absinthe
• blackra1n
• Corona
• greenpois0n
• JailbreakMe
• limera1n
• PwnageTool
• redsn0w
• evasi0n
• sn0wbreeze
• Spirit
• Pangu

A more comprehensive list of jailbreaking tools for iOS, exploits and kernel patches can be found
on the iPhoneWiki website.

Android: there are various rooting software available for Android. Tools and processes vary
depending on the user’s device. The process is usually to:

1. Unlock the boot loader;
2. Install a rooting application and / or flash a custom ROM through the recovery mode.

Not all of the above tasks are necessary and different toolkits are available for device specific
rooting process. Custom ROMs are based on the hardware being used; examples of some are as
follows:

• CyanogenMod ROMs are one of the most popular aftermarket replacement firmware in the
Android world. More comprehensive device specific firmwares, flashing guides, rooting
tools and patch details can be referenced from the homepage;

• ClockWorkMod is a custom recovery option for Android phones and tablets that allows
you to perform several advanced recovery, restoration, installation and maintenance
operations etc. Please refer to XDA-developers for more details.

Windows Phone OS: several tools and techniques exist to unlock Windows Phone devices,
depending on the OS’s version, the specific device vendor and the desired unlocking level:

• Microsoft Official Developer Unlock: the Windows Phone SDK includes the "Windows
Phone Developer Registration" utility that is used to freely developer-unlock any Windows
Phone OS device. In the past, free developer unlocking was limited to recognized students
from the DreamSpark program;

• The ChevronWP7 Unlocker and Tokens: in the early days of Windows Phone hacking,
ChevronWP7 Labs released an unlocker utility (ChevronWP7.exe) that was used to
unofficially developer-unlock Windows Phone 7 devices. The unlocker changed the local
PC hosts file in order to reroute all the “developerservices.windowsphone.com” traffic to a
local web server served with the HTTPS protocol. A crafted digital certificate
(ChevronWP7.cer) was also required to be imported on the target Windows Phone device:
the so configured environment allowed the unlocker to perform a Man-in-The-Middle
(MiTM) attack against the USB attached device, simulating of a legitimate uncloking
process. Basically, the utility exploited a certificate validation issue that affected the early
version of Windows Phone platform. Lately, ChevronWP7 Labs established a collaboration
with Microsoft, allowing users to officially developer-unlock their devices by acquiring
special low-price unlocking tokens;

• Heathcliff74’s Interop-unlock Exploit: Heathcliff74 from XDA-developers developed a
method to load and run custom provisioning XML files (provxml) to interop-unlocked
Windows Phone 7 devices. The idea behind the method was to craft a XAP file (which is a
simple compressed archive) containing a directory named “../../../../provxml”, and then
extract the content of the folder (a custom provxml file) within the \provxml\ system folder:
abusing vulnerable OEM apps (e.g., Samsung Diagnosis app) the provxml file could then
have been run, thus allowing changing registry settings (e.g., the MaxUnsingedApp key) and
achieving the desired unlock. The method requires the target device to be developer-
unlocked in order to sideload the unsigned XAP-exploit;

• The WindowsBreak Project: Jonathan Warner (Jaxbot) from windowsphonehacker.com
developed a method to achieve both the developer and the interop unlock, while using the
technique ideated by Heathcliff74, but without the need to sideload any unsigned apps. The
exploit consisted of a ZIP file containing a custom provxml file within a folder named
“../../../../provxml”: the extraction of the custom provxml file in the \provxml\ system folder
was possible thanks to the use of the ZipView application. The original online exploit is no
longer available because the vulnerability exploited by WindowsBreak has been patched by
Samsung;

• WP7 Root Tools: the WP7 Root Tools is a collection of utilities developed by Heathcliff74
to obtain root access within a interop-unlocked or full-unlocked platform. The suite provides
a series of tools including the Policy Editor, which is used to select trusted apps that are
allowed to get root access and escape their sandbox. The suite targets Windows Phone 7
devices only;

• Custom ROMs: custom ROMs are usually flashed to achieve interop or full unlock
conditions. A numbers of custom ROMs are available for the Windows Phone 7 platforms
(e.g., RainbowMod ROM, DeepShining, Nextgen+, DFT’s MAGLDR, etc.). The first
custom ROM targeting Samsung Ativ S devices was developed by -W_O_L_F- from XDA-
developers, providing interop-unlock and relock-prevention features among other system
tweaks;

• OEMs App and Driver Exploits: unlocked access is often achieved exploiting security
flaws in the implementation or abusing hidden functionalities of OEM drivers and apps,
which are shipped with the OS. Notable examples are the Samsung Diagnosis app – abused
in the Samsung Ativ S hack - that included a hidden registry editor, and the LG MFG app:
both have been used to achieve the interop-unlock by modifying the value of the
MaxUnsignedApp registry value.

Why can it be dangerous?
The tools above can be broadly categorized in the following categories:

• Userland Exploits: jailbroken access is only obtained within the user layer. For instance, a
user may have root access, but is not able to change the boot process. These exploits can be
patched with a firmware update;

• iBoot Exploit: jailbroken access to user level and boot process. iBoot exploits can be
patched with a firmware update;

• Bootrom Exploits: jailbroken access to user level and boot process. Bootrom exploits
cannot be patched with a firmware update. Hardware update of bootrom required to patch in
such cases;

Some high level risks for jailbreaking, rooting or unlocking devices are as follows.

Technical Risks

1. General Mobile
1. Some jailbreaking methods leave SSH enabled with a well-known default password

(e.g., alpine) that attackers can use for Command & Control;
2. The entire file system of a jailbroken device is vulnerable to a malicious user

inserting or extracting files. This vulnerability is exploited by many malware
programs, including Droid Kung Fu, Droid Dream and Ikee. These attacks may also
affect unlocked Windows Phone devices, depending on the achieved unlocking
level;

3. Credentials to sensitive applications, such as banking or corporate applications, can
be stolen using key logging, sniffing or other malicious software and then
transmitted via the internet connection.

2. iOS
1. Applications on a jailbroken device run as root outside of the iOS sandbox. This can

allow applications to access sensitive data contained in other apps or install
malicious software negating sandboxing functionality;

2. Jailbroken devices can allow a user to install and run self-signed applications. Since
the apps do not go through the App Store, Apple does not review them. These apps
may contain vulnerable or malicious code that can be used to exploit a device.

3. Android
1. Android users that change the permissions on their device to grant root access to

applications increase security exposure to malicious applications and potential
application flaws;

2. 3rd party Android application markets have been identified as hosting malicious
applications with remote administrative (RAT) capabilities.

4. Windows Phone OS
1. Similarly to what is happening with other mobile platforms, an unlocked Windows

Phone system allows the installation of apps that are not certified by Microsoft and
that are more likely to contain vulnerabilities or malicious codes;

2. Unlocked devices generally expose a wider attack surface, because users can
sideload apps that not only could be unsigned, but that could also abuse capabilities
usually not allowed to certified Windows Phone Store applications;

3. Application sandbox escaping is normally not allowed, even in case of a higher level
of unlocking (e.g., interop-unlock), but it is possible in full-unlocked systems.

Non-technical risks

1. Under the current Digital Millennium Copyright Act (DMCA), jailbreaking is termed as
'legal' in the US, which can provide some users with a false sense safety and jailbreaking as
being harmless. Please refer to 'Rulemaking on Anticircumvention' for more details;

2. Software updates cannot be immediately applied because doing so would remove the
jailbreak. This leaves the device vulnerable to known, unpatched software vulnerabilities;

3. Users can be tricked into downloading malicious software. For example, malware
commonly uses the following tactics to trick users into downloading software:

1. Apps will often advertise that they provide additional functionality or remove ads
from popular apps but also contain malicious code;

2. Some apps will not have any malicious code as part of the initial version of the app
but subsequent "Updates" will insert malicious code.

4. Manufacturers have determined that jailbreaking, rooting or unlocking are breach of the
terms of use for the device and therefore voids the warranty. This can be an issue for the
user if the device needs hardware repair or technical support (Note: a device can be restored
and therefore it is not a major issue, unless hardware damage otherwise covered by the
warranty prevents restoration).

What controls can be used to protect against it? Before an organization chooses to implement a
mobile solution in their environment, they should conduct a thorough risk assessment. This risk
assessment should include an evaluation of the dangers posed by jailbroken devices, which are
inherently more vulnerable to malicious applications or vulnerabilities such as those listed in the
OWASP Mobile Security Top Ten Risks. Once this assessment has been completed, management
can determine which risks to accept and which risks will require additional controls to mitigate.

Below are a few examples of both technical and non-technical controls that an organization may
use.

Technical Controls

Some of the detective controls to monitor for jailbroken devices include:

1. Identify 3rd party app stores (e.g., Cydia);
2. Attempt to identify modified kernels by comparing certain system files that the application

would have access to on a non-jailbroken device to known good file hashes. This technique
can serve as a good starting point for detection;

3. Attempt to write a file outside of the application’s root directory. The attempt should fail for
non-jailbroken devices;

4. Generalizing, attempt to identify anomalies in the underlying system or verify the ability to
execute privileged functions or methods.

Despite being popular solutions, technical controls that aims to identify the existence of a jailbroken
system must relay and draw conclusions based on information that are provided by the underlying
platform and that could be faked by a compromised environment, thus nullifying the effectiveness
of the mechanisms themselves. Moreover, most of these technical controls can be easily bypassed
introducing simple modifications to the application binaries; even in the best circumstances, they
can just delay, but not block, apps installation onto a jailbroken device.

Most Mobile Device Management (MDM) solutions can perform these checks but require a specific
application to be installed on the device.

In the Windows Phone universe, anti-jailbreaking mechanisms would require the use of privileged
APIs that normally are not granted to Independent Software Vendors (ISV). OEM apps could
instead be allowed to use higher privileged capabilities, and so they can theoretically implement
these kind of security checks.

Non-Technical Controls

Organizations must understand the following key points when thinking about mobile security:

1. Perform a risk assessment to determine risks associated with mobile device use are
appropriately identified, prioritized and mitigated to reduce or manage risk at levels
acceptable to management;

2. Review application inventory listing on frequent basis to identify applications posing
significant risk to the mobility environment;

3. Technology solutions such as Mobile Device Management (MDM) or Mobile Application
Management (MAM) should be only one part of the overall security strategy. High level
considerations include:

1. Policies and procedures;
2. User awareness and user buy-in;
3. Technical controls and platforms;
4. Auditing, logging, and monitoring.

4. While many organizations choose a Bring Your Own Device (BYOD) strategy, the risks and
benefits need to be considered and addressed before such a strategy is put in place. For
example, the organization may consider developing a support plan for the various devices
and operating systems that could be introduced to the environment. Many organizations
struggle with this since there are such a wide variety of devices, particularly Android
devices;

5. There is not a ‘one size fits all’ solution to mobile security. Different levels of security
controls should be employed based on the sensitivity of data that is collected, stored, or
processed on a mobile device or through a mobile application;

6. User awareness and user buy-in are key. For consumers or customers, this could be a focus
on privacy and how Personally Identifiable Information (PII) is handled. For employees, this
could be a focus on Acceptable Use Agreements (AUA) as well as privacy for personal
devices.

Conclusion
Jailbreaking and rooting and unlocking tools, resources and processes are constantly updated and
have made the process easier than ever for end-users. Many users are lured to jailbreak their device
in order to gain more control over the device, upgrade their operating systems or install packages
normally unavailable through standard channels. While having these options may allow the user to
utilize the device more effectively, many users do not understand that jailbreaking can potentially
allow malware to bypass many of the device's built in security features. The balance of user
experience versus corporate security needs to be carefully considered, since all mobile platforms
have seen an increase in malware attacks over the past year. Mobile devices now hold more
personal and corporate data than ever before, and have become a very appealing target for attackers.
Overall, the best defense for an enterprise is to build an overarching mobile strategy that accounts
for technical controls, non-technical controls and the people in the environment. Considerations
need to not only focus on solutions such as MDM, but also policies and procedures around common
issues of BYOD and user security awareness.

