
Volume 3, Issue 1
January 2006

main() 2
BlackBerry Resources 3

Visualization as a Development Tool 4
• How to use visualization and goal setting to improve your life and

develop world-class software

B Reel: From concept to design 5
• How to build a movie tracking database application

IPD File Format 19
• All of the inner details about the IPD file format that is used for

BlackBerry Back Up and Restore

The BlackBerry Graphical User Interface:
Part 2 - Direct Screen Drawing 29

• Explores how to use the Graphics class to draw directly to a screen
or field

Using WBXML Parsing to Send Data to
Wireless Devices 33

• A tutorial on how Wireless binary XML (WBXML) offers a
cost-saving alternative to XML documents by replacing
customized XML tags with a binary value

Object Grouping 37
• Coding persistent store applications to reduce reliance on object

handles

The Object versus Service dilemma 44
• Making room for OO in Web Services

Would you like some testing with that? 46
• Some common issues facing developers and testers in the industry

API Spotlight: BlackBerry does GPS 47
• This installment goes into extreme detail on the fundamentals of

GPS technology, and specific details of GPS for BlackBerry
devices and how to develop software for it.

BlackBerry Developer Journal 2 Volume 3, Issue 1

main()
“No matter how much evidence exists that seers do not exist, suckers will pay for the existence of seers.”
The Seer-Sucker Theory: The Value of Experts in Forecasting
J. Scott Armstrong, Published in Technology Review, June/July 1980, 16-24

Armstrong concluded that experts are generally awful at predicting change, breed the inability to accept
new views, and ignore disconfirming evidence that does not fit within their preconceived notions.

In James Surowiecki’s recent book, “The Wisdom of Crowds” (Anchor Publishing, 2004), the author
takes The Seer Sucker Theory much further.

Surowiecki's contention is that “many are smarter than the few, and collective wisdom shapes business,
economies, societies and nations.” In brief, an expert or a group of experts have very specific knowledge
and expertise. If you arrange for an expert, or group of experts, to provide advice in some broad areas,
chances are high that their advice will be wrong. If you arrange for a highly diverse group of people to
provide their opinions, they will bring together a wider mix of knowledge and experience than possible
by a group of like-minded experts. By averaging out their advice and using the average to set direction,
chances are higher that the direction chosen will be correct.

Surowiecki's thesis can be validated in several ways. For example, many companies have gone sour
because of bad decisions, rotten management, greed and tunnel vision by a select group within. Many
government policies have failed to work because they were cooked up for political reasons by individuals
with similar beliefs and experience. Major private and public sector scandals erupt through the efforts of
a select group of like-minded people. Pricing within stock, commodity and consumer markets are set
through the efforts of a wide body of people and groups with dissimilar backgrounds. Traffic flow occurs
on highways and streets throughout the world purely because of the efforts of a wide selection of unre-
lated people. Overall, people, when unhindered by pressure from special interest groups and the media,
can make exceptional decisions on a collective basis.

The same philosophy should apply to the development of most commercial software. For example, I’ve
created thousands of commercial and custom software applications. Of those, only a few have gone on to
long-term success largely because they were developed with massive levels of user input. The products
developed at the request of experts with a good idea always turned out to be a waste of time.

Before starting the wheels in motion to create a commercial application, determine what market exists,
and what the end users really want. At the alpha and beta stages of development, include as many end
users as possible in your testing to catch errors and help refine the look, feel and functionality. The cost of
getting end-user input and involvement is low compared to the benefits that can be realized by doing it
right.

As always we are interested in your comments, suggestions, letters, and anything else that you feel would
be of benefit to our developer community.

Please feel free to email us at Editor@BlackBerryDeveloperJournal.com.

BlackBerry Developer Journal team

Volume 3, Issue 1 3 BlackBerry Developer Journal

BlackBerry Resources

The following are third-party sites that BlackBerry developers may find beneficial in their eternal search for information, soft-
ware, source code, reviews, and sage advice from like-minded souls. Please feel free to drop us a line at Editor@BlackBerry-
DeveloperJournal.com if you would like us to consider the inclusion of your site in this column.

“Mobile PC Guide to BlackBerry” Book
by Bill Foust

ISBN: 0789733439
Paperback: 240 pages

Publisher: Que
http://www.quepublishing.com/bookstore/product.asp?isbn=0789733439&rl=1

“Professional BlackBerry” Book
by Craig J. Johnston, Richard Evers

ISBN: 0-7645-8953-9
Paperback: 336 pages

Publisher: Wiley
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-0764589539.html

Important Notice: This information may contain references to third party sources of information, hardware, software, products
or services, and/or third party websites (the “Third Party Information.”) Any Third Party Information that is provided with or
without Research In Motion Limited or its affiliated companies (“RIM”) products and/or services is provided “as is.” RIM
makes no representation, warranty or guarantee whatsoever in relation to the Third Party Information and RIM assumes no li-
ability whatsoever in relation to the Third Party Information even if RIM has been advised of the possibility of such damages
or can anticipate such damages. The inclusion of Third Party Information herein does no imply endorsement by RIM of the
Third Party Information or the third party in any way. RIM does not control and is not responsible for any Third Party Infor-
mation, including without limitation, the content, accuracy, intellectual property issues, compatibility, trustworthiness, legali-
ty, decency, links or any other aspects of the Third Party Information..

Volume 3, Issue 1 4 BlackBerry Developer Journal

Visualization as a Development Tool
Richard Evers, Editor

Visualization and goal setting are two powerful tools that can
be used to create exceptional software. The basic theory is
that if you want something to happen, regularly visualize
(make a mental picture of) what you want in precise detail,
and then set goals to gradually get what you are visualizing.

I’ve used these techniques with varying levels of success
since childhood. The key is to be creative and positive at
every turn, accept responsibility for events that have
occurred in your life, be prepared to work hard, set goals that
you believe you can reach, make achieving your goals your
primary responsibility, and have the skills necessary to
accomplish your goals. The true power of this technique is
found when the visualizer does most or all of the work.

Most children use visualization and goal setting to get what
they want. For example, when throwing a tantrum in a public
location: they visualize, set goals, are willing to work as hard
as necessary to get their way, and use their existing skills to
get it. The one area where this technique falls apart is nega-
tivity. Parents may give in to the little tyrant occassionally,
but over the long haul, the technique will fail.

I have successfully used visualization and goal setting for
many years when developing software. For me, this works
by setting goals to achieve and then visualizing achievement
of those goals.

Setting goals is often the most difficult part because the
entire project has to “crystallize” in my mind before I can do
anything of worth. This means that I have to learn as much
as possible about the project so that I can visualize how it
will look, feel and work when it’s finished. While waiting for
crystallization to occur as the facts come in, I usually create
components that are sure to be necessary within the project.

When the magic moment arrives where I can fully visualize
the project, I further refine visualization to understand how
everything fits together from a technical perspective. From
there I visualize the code flow required to make it all happen.
After that, it often becomes an exercise in visualizing the
actual code, then typing what has been completed in my
head. Sadly, reaching this level of visualization is not easy as
it seems.

For me, this technique only works on fairly challenging
projects where I can isolate myself from interruptions and
remain fully focused. This means minimal interruptions
from family, friends, coworkers, phone calls, email, network
activity, boredom, and more. A total lockdown works best.
Even better, working at night and through the wee hours of
the morning in a windowless room, especially after working
on the project all day, lowers my defenses enough to allow
full visualization to occur.

Most developers rarely, if ever, achieve this state of focus
when developing software. This is usually due to interrup-
tions, distractions and meetings, a 9-to-5 development men-
tality, shared project responsibilities, bad management, poor

design and analysis, a weak grasp of the language or target
platform, a lack of interest, or a bad work environment.

It’s often impossible to visualize a project even when condi-
tions are perfect when the requirements or timelines are
unrealistic or sketchy. At times the challenge of trying to
meet unrealistic expectations can lead to breakthroughs of
the highest order. For me, one of the biggest motivators in
the past has been trying to accomplish goals that seem unat-
tainable by most sane developers.

This can be shown in two projects where one seemed possi-
ble but turned out to be impossible, where the other seemed
impossible but proved to be possible.

The first project involved creating a lossless compression
algorithm that eclipsed all known techniques used at the
time. I started with the assumption that data can be repeat-
edly organized into patterns that can be compressed. By
repeat reorganization and compression, extreme levels of
compression should be possible.

Dozens of techniques were developed to organize and com-
press data. At one stage I developed a series of techniques
that generated extremely tiny files. Unfortunately, my
decompressor proved that the overall method of combining
techniques was flawed. After repeatedly failing to produce
extremely tiny files, I realized that it is impossible from a
mathematical perspective. The overhead associated with
each data organization technique combined with limits on
reduced permutations greatly curbs maximum lossless com-
pression ratios. The up-side of this work was that my algo-
rithms were terrific for data encryption.

The second project involved development of extremely
high-speed search algorithms where size and speed were
equally critical due to media and platform constraints.

I started with the usual indexing techniques and found they
all were too consumptive and slow. I modified the tech-
niques to further improve performance and reduce size, and
found that the improvements were still not good enough. I
developed several custom techniques to improve speed and
reduce overhead, all with limited success. Finally, I devel-
oped a winning technique that used less than 20% of the stor-
age of a standard bTree index, delivering results upwards of
1,600% faster, with no limit on key length or number of
search words or phrases, and operating with minimal mem-
ory overhead. All in all, it was pretty impressive.

By the time I came across my winning search design, I was
truly in the zone of visualization. No hurdle remained to stop
me from fully visualizing how every piece of the various
applications I wrote would fit together. For the grueling year
it took me to complete this project, I kept every line of code,
and every technical detail of how it worked, in my head for
instant access. In that way, any difficulties could be instantly
sorted out because I was a human debugger. It was strange
but true, and probably common among many top developers
today.

Volume 3, Issue 1 5 BlackBerry Developer Journal

B Reel: From concept to design
Michael Clewley, Editor

Everybody loves a good flick, and there's nothing better than
watching your favourite movie over and over again in the
comfort of your own home. Most people have their own
stockpile of favorite movies for their own personal enjoy-
ment. How many times have you been in a conversation with
someone and they ask you “oh, so what movies do you
have?”. You sit there, pull out the fingers and toes, start
counting and can't even get past the first hand. You've forgot-
ten your favourite collection! Don't worry; I've been there
with you, with that same dumbfounded and disappointing
look. So there's no better idea for an application than a
movie-tracking database. It's a good way to learn how to cre-
ate a basic application, it’s fun, and it’s something you're
sure to use. By the end, you should have a really cool appli-
cation that includes components you can use in future appli-
cations.

Now you ask yourself, where do I begin? Well the name of
the game is tracking movies, so what's the first thing that
comes to mind? Here are a few things that came to my mind:

• Title
• Studio

• Format (DVD/VHS)
• Did I lend it to a friend?
• If I lent it, to who?
I think those are the key pieces of information. But thinking
about it more there were some other ideas. Who knows if
they'll make it in the final application though! They include:

• length of movie
• comments / notes
• year
I'm sure the list could go on and on. Each person has differ-
ent needs from an application. At some point you need to
stop the daydreaming and make a decision, or you'll never
get anything done!

Now that we've given our data model some thought, let's turn
the ideas into actual code.

Start off by doing any necessary imports and then the class
declaration. We know that this movie data is going to be
store on the device. Make sure to import the necessary class.

——
package com.bbdj.samples.breel;

import net.rim.device.api.util.Persistable;

final public class BReelMovieElement implements Persistable {
——

The only other piece of information to note is that we are
going to make the class final because its not going to be
extended and it allows the compiler to optimize the class to
create smaller code.

Now we take the ideas of the data and create variables for
our class.

——
//variables
private byte _lentTo[];
private byte _movieTitle[];
private byte _productionCompany[];

private int _genre;
private int _format;
private boolean _lentOut; //false
——

Let’s examine what happened in the code above. Each piece
of information has been analyzed and turned into a primitive
data type that best matches the functionality. As a personal
preference, I like to group variables according to type. While
some prefer to group alphabetically, it makes no difference.
Data that is going to be plain text has been defined as byte
arrays because it's more efficient to convert a string to a byte
array and store the array than it is to store a String object.

The format will be a number that represents the video for-
mat. And lastly, a boolean value is being used to represent
whether the movie has been lent out.

The next piece is the constructor, but we are not actually ini-
tializing anything here so we'll omit it for now. It should be
noted that the variables that we have defined at the class
level are automatically initialized to their default values.

Volume 3, Issue 1 6 BlackBerry Developer Journal

Moving along, we need ways to set the data and also extract
the current values. In this application there are only five data
types, so we use the set and get methods for each variable. If

this class had many different variables then we might want to
use an alternative method of retrieving the information, such
as getInt(), getString(), getBoolen() methods.

——
/**
 * @return the format of the movie
 */
/* package */ int getFormat() {
return _format;

}

/**
 * @return True if lent out, false otherwise
 */
/* package */ boolean getLentOut() {
return _lentOut;

}

/**
 * @return the genre of the movie
 */
/* package */ int getGenre() {
return _genre;

}

/**
 * @return name of the person the movie was lent to
 */
/* package */ String getLentTo() {
if (_lentTo == null || _lentTo.length == 0) {
return "";

}
return new String(_lentTo);

}

/**
 * @return title of the movie
 */
/* package */ String getMovieTitle() {
if (_movieTitle == null || _movieTitle.length == 0) {
return "";

}
return new String(_movieTitle);

}

/**
 * @return production/film company name
 */
/* package */ String getProdCompany() {
if (_productionCompany == null || _productionCompany.length == 0) {
return "";

}
return new String(_productionCompany);

}
——

We now have a way of retrieving the data from the instance
of the class. Everything shown above is pretty straightfor-
ward, but there might be some things that are not familiar to
you. At the start of each method I have placed a comment /*
package */. This means that the method has default permis-
sions access and I just wanted to note that. The system does

some optimization if the method modifier is omitted, and
allows for a smaller file size for the application when com-
pleted. Lastly, the byte arrays values are all converted to a
String object before being returned, with a check put in place
to ensure that we don't return a null.

Volume 3, Issue 1 7 BlackBerry Developer Journal

——
/**
 * @param value - number assigned to the format
 */
/* package */ void setFormat(int value) {
_format = value;

}

/**
 * If the value is true and set it false it will also clear the lentTo field.
 * @param value true if lent out, false otherwise
 */
/* package */ void setLentOut(boolean value) {
_lentOut = value;
if (!_lentOut) {
setlentTo("");

}
}

/**
 * @param value the genre of the movie
 */
/* package */ void setGenre(int value) {
_genre = value;

}

/**
 * @param data name of the person the movie is lent too
 */
/* package */ void setlentTo(String data) {
_lentTo = data.getBytes();

}

/**
 * @param data movie title
 */
/* package */ void setMovieTitle(String data) {
_movieTitle = data.getBytes();

}

/**
 * @param data production/film company
 */
/* package */ void setProdCompany(String data) {
_productionCompany = data.getBytes();

}
——

With the ability to set the data in the object, our BReelMov-
ieElement is now complete. The only note on the above
methods would be those methods that are receiving String
objects. From within the method we are converting the
String object to a byte array using the getBytes() method.

With our element class now ready to roll, we need to a way
to track a list of all the different movies. This list will imple-
ment the List interface, read and save the data from persis-
tence, and sort the list as well. Let's dive in.

——
package com.bbdj.samples.breel;

import java.util.Vector;
import net.rim.device.api.collection.List;
import net.rim.device.api.system.*;
import net.rim.device.api.ui.Graphics;
import net.rim.device.api.ui.component.ListFieldCallback;
import net.rim.device.api.ui.component.ListField;

Volume 3, Issue 1 8 BlackBerry Developer Journal

/**
 *
 */
class BReelMovieList implements List, ListFieldCallback {

/**
 * The ID used to store the data in persistence
 */
//com.bbdj.samples.breel.BReelMovieList
private static final long B_REEL_MOVIE_LIST = 0x2713ab1c1a7c4c15L;

/**
 * Comparator for the movie elements
 */
private BReelMovieElementComparator _comparator;

/**
 * A Vector containing the BReelMovieElement
 */
private Vector _list;

/**
 * The persistent store object
 */
private PersistentObject _persist;

/**
 * Reads the list from persistence or creates a new one if not found
 */
public BReelMovieList() {
_persist = PersistentStore.getPersistentObject(B_REEL_MOVIE_LIST);
Object obj = _persist.getContents();

if(obj == null) {
obj = new Vector();

//store the vector
_persist.setContents(obj);
_persist.commit();

}
_list = (Vector)obj;

_comparator = new BReelMovieElementComparator();
}

/**
 * Saves the data to the store
 */
private void commit()
{
_persist.commit();

}
——

Let's cover what just happened. To start we have the usual
package and import statements, along with the class declara-
tion. The B_REEL_MOVIE_LIST variable is a constant that
will be used as a unique ID for the persistent database. The
_list variable will contain all of the BReelMovieElements,
and _persist is the persistent store object. The constructor

has been marked as private because we don't want to be able
to instantiate the object from outside of the class. The con-
structor is also responsible for retrieving the data from the
store. The last piece included in the code above is a commit()
method which will be responsible for actually storing the
vector to persistence.

——

Volume 3, Issue 1 9 BlackBerry Developer Journal

///
// Implementation of Readable List //
///

public Object getAt(int index)
{
return _list.elementAt(index);

}
public int getAt(int index, int count, Object[] elements, int destIndex)
{
return 0; //not implemented

}
public int getIndex(Object element)
{
return _list.indexOf(element);

}
public int size()
{
return _list.size();

}
///
// Implementation of WriteableList Interface //
///

public void add(Object element)
{
//check if the element is grouped, if not, do it now
if(!ObjectGroup.isInGroup(element)) {
ObjectGroup.createGroup(element);

}

//we are going to add an element in a sorted order
int size = size();
for (int cnt = 0; cnt < size; ++cnt) {
BReelMovieElement compare = (BReelMovieElement)_list.elementAt(cnt);

if (_comparator.compare(element, compare) < 0) {
insertAt(cnt, element);
return;

}
}

//the element wasn't added, so it goes to the bottom of the list
_list.addElement(element);
commit();

}

public void insertAt(int index, Object element)
{
//check if the element is grouped, if not, do it now
if(!ObjectGroup.isInGroup(element)) {
ObjectGroup.createGroup(element);

}

_list.insertElementAt(element, index);
commit();

}

public void remove(Object element)
{
_list.removeElement(element);

Volume 3, Issue 1 10 BlackBerry Developer Journal

commit();
}

public void removeAll()
{
_list.removeAllElements();
commit();

}

public void removeAt(int index)
{
_list.removeElementAt(index);
commit();

}
——

These methods are just an implementation of the List inter-
face for all of the writeable accessors. We start off with the
readable methods, and then move to the writeable methods.
With all of the writable methods you need to make sure that

you commit the data to persistence. The add method is also
doing a bit of extra work. We don't want to just add a new
movie element into the mix of things, so we'll add it in a
sorted way based on the movie title.

——
///
// Implementation of ListFieldCallback Interface //
///

public void drawListRow(ListField listField, Graphics graphics, int index, int y, int width) {
//put a check in as a precaution so that we don't throw an out of bounds exception
int size = size();
if (size > 0 && index < size) {
BReelMovieElement element = (BReelMovieElement)getAt(index);
graphics.drawText(element.getMovieTitle(), 0, y, 0, width);

}
}
/**
 * Used to assit with the search
 * @param listField
 * @param index
 * @return Movie Title
 */
public Object get(ListField listField, int index) {
BReelMovieElement element = (BReelMovieElement)getAt(index);
return element.getMovieTitle();

}
public int getPreferredWidth(ListField listField) {
return Graphics.getScreenWidth();

}

/**
 * Performs a search of data in the field
 * @param listField <description>
 * @param prefix <description>
 * @param start <description>
 * @return <description>
 */
public int indexOfList(ListField listField, String prefix, int start) {
return listField.indexOfList(prefix,start);

}

public void insertItem(int index, Object element) {
}

}

Volume 3, Issue 1 11 BlackBerry Developer Journal

——

The last part of our list class is implementing the ListField-
Callback. We want to make the list responsible for the draw-
ing of the elements, which is where the drawListRow()
method comes into play. When an element is drawn we are
choosing to just draw the movie title. Other methods worth
noting are the indexOffList(), and get() methods. These two

methods combined will allow simple searching of the list
field, adding some extra power to the application and mak-
ing it easy for the user to find what they want.

The comparator is pretty simple. The main concern is the
compare() method which compares the movie titles from the
sorted list.

——
package com.bbdj.samples.breel;

import net.rim.device.api.util.Comparator;

class BReelMovieElementComparator implements Comparator {
public BReelMovieElementComparator() {
// Do nothing.

}

public int compare(Object o1, Object o2) {
// compare the movie titles
BReelMovieElement element1 = (BReelMovieElement)o1;
BReelMovieElement element2 = (BReelMovieElement)o2;

return (StringUtilities.compareToIgnoreCase(element1.getMovieTitle(),
element2.getMovieTitle()));

}

public boolean equals(Object obj) {
// We don't need to know this

return false;
}

}
——

We have successfully built the foundation for the applica-
tion, and are ready to move onto the next phase. Let's take a
break and move into the user interface scene. The first thing
we want to create is a method that allows us to keep a single

tracking point for the list of our movies. Also down the road
this class will become useful for different features, but that's
for the second chapter of this story that will be published in
the next issue.

——
package com.bbdj.samples.breel;

import net.rim.device.api.system.RuntimeStore;

final class BReel
{
/**
 * ID used to store the object in the runtime store
 */
//com.bbdj.samples.breel.BReel
private static final long APP_ID = 0x1db8890f0df27f91L;

/**
 * List of all the Movie Elements
 */
private BReelMovieList _list;

/**
 * Constructor
 */
private BReel() {
_list = new BReelMovieList();

Volume 3, Issue 1 12 BlackBerry Developer Journal

}

/**
 * Retrives a single instance of BReel
 * @return current instance of BReel
 */
/* package */ static BReel getInstance() {
RuntimeStore store = RuntimeStore.getRuntimeStore();
Object bReel = store.get(APP_ID);

if (bReel == null) {
bReel = new BReel();
store.put(APP_ID, bReel);

}

return (BReel)bReel;
}

/**
 * @return The data from persistence
 */
/* package */ BReelMovieList getList() {
return _list;

}
}
——

Everything here is pretty basic, with the possible exception
of the getInstance(). This is a static method that retrieves the
single instance of BReel so that we only work with one
instance of the BReelMovieList. As you can see, the con-
structor is private so only the getInstance() method can
invoke it. Once we have created the instance we also provide
a method from pulling out the list for the screens to use.

The next class is currently a very simple class, but it is the
main driver class, or the entry point for the application.
When the user clicks on the icon the main method is invoked
and 3...2...1...action!

——
package com.bbdj.samples.breel;

import net.rim.device.api.ui.UiApplication;

final class BReelApp extends UiApplication
{
public static void main(String args[]) {
new BReelApp().enterEventDispatcher();

}

public BReelApp() {
pushScreen(new BReelScreen());

}
}
——

Finally! We actually get to see what something is going to
look like. BReelScreen at the moment is a basic screen, but
it's still better than nothing. The screen itself only contains a

list field that will list all of the movies in our database. On
top of that we have some menu items which take care of
opening, delete, or creating a new movie entry.

——
package com.bbdj.samples.breel;

import net.rim.device.api.system.GlobalEventListener;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.MainScreen;

Volume 3, Issue 1 13 BlackBerry Developer Journal

final class BReelScreen extends MainScreen implements GlobalEventListener {

/**
 * ID used to identify when a screen update has to take place
 */
//com.bbdj.samples.breel.BReelScreen
public static final long SCREEN_UPDATE = 0x7d2f34f5416d5bb5L;

//menu item varaiables
private MenuItem _deleteItem = new MenuItem("Delete", 500001, 600000) {
public void run() {
deleteMovie();

}
};
private MenuItem _newItem = new MenuItem("New", 500000, 600000) {
public void run() {
addNewMovie();

}
};
private MenuItem _openItem = new MenuItem("Open", 500001, 500000) {
public void run() {
openMovie();

}
};

//UI Variables
private BReelMovieList _list;
private ListField _listField;

/* package */ BReelScreen() {
//set the title of the screen
setTitle("BReel Movie Database");

//get the move list
_list = BReel.getInstance().getList();

//create the list field and set the callback
_listField = new ListField();
_listField.setSearchable(true);
_listField.setCallback(_list);
_listField.setSize(_list.size());

//add the field to the screen
add(_listField);

//add the listener to the screen
UiApplication.getUiApplication().addGlobalEventListener(this);

addMenuItem(_newItem);

}
——

Let's take a step back from the production floor and head to
the editing room to figure out how the shot went. We start
with some basic declarations and imports. Note that the
screen extends MainScreen, which means that our screen
will have a default set of behaviours. Added to that we
implement the GlobalEventListener, which will be used to
update the ListField from classes that are outside of the
screen but can affect the data.

A key is defined for our screen update event, and then we
jump into defining the menu items for the screen and what
exactly they are going to do. When a movie is highlighted
we want the default menu action to be the open action, so we
are giving it a lower priority value than the other two menu
items.

Shifting into the constructor, the masterpiece begins. For an
esthetic effect we are adding a title to the screen. Now create
the list field, allow it to be searchable, set the callback and

Volume 3, Issue 1 14 BlackBerry Developer Journal

size and add it to the screen. The last step that the constructor
must do is to register itself to be a global event listener so
that it gets notified when an update is necessary.

——
//make sure we remove the listener
public void close() {
UiApplication.getUiApplication().removeGlobalEventListener(this);
super.close();

}

public void makeMenu(Menu menu, int instance) {
if (_list.size() > 0) {
menu.add(_openItem);
menu.add(_deleteItem);

}
super.makeMenu(menu, instance);

}
——

In these methods we are just adding to the default behaviour
of the screen. When close() is called and there is only one
screen on the display stack, then the screen is popped from
the stack and system.exit(0) is called. Before the application
is ended we want to un-register the global event listener.

Overriding the makeMenu() class allows us to control what
menu items are displayed to the user. This is important
because you wouldn't want an open, or delete, menu item
when there is nothing in the list.

——
/**
 * Gives user ability to add a new movie to the list
 */
/* package */ void addNewMovie() {
UiApplication.getUiApplication().pushScreen(new BReelMovieElementScreen());

}

/**
 * Deletes a movie eletment from the list
*/
/* package */ void deleteMovie() {
//get the selected item, and remove it
int index = _listField.getSelectedIndex();
_list.removeAt(index);

//set the size of the list file which causes invalidate
_listField.setSize(_list.size());

}

/* package */ void openMovie() {
BReelMovieElement element =
(BReelMovieElement)_list.getAt(_listField.getSelectedIndex());

UiApplication.getUiApplication().pushScreen(
new BReelMovieElementScreen(element, false));

}
——

Actions have now been defined for the menu items. One of
the reasons that the actions have been placed in a separate
method is because your could override the keychar() method
on the listField or screen to capture user input. Most com-

monly, the enter key would be mapped to the open item, and
the delete/backspace key mapped to the delete item. The add
and open actions both use the same screen but just pass in
different parameters for the required action.

——
///
// Implementation of GlobalEventListener //
///
public void eventOccurred(long guid, int data0, int data1, Object object0, Object object1) {

Volume 3, Issue 1 15 BlackBerry Developer Journal

if (guid == SCREEN_UPDATE) {
_listField.setSize(_list.size());

}
}

}
——

The last thing that we need to worry about in this screen is
the implementation of the global event listener. In this case
it's simple. Just check if the guid passed into the eventOc-
curred() method is the same as the SCREEN_UPDATE ID.
If that's the case, then size the list field accordingly which
causes the list field to invalidate itself.

The climax to this plot has been reached and we are heading
to the conclusion, but don't worry. There's plenty of action
left to be had! The BReelMovieElementScreen provides a
way for the user to create and review detailed information
about any movie in the list on the BReelScreen.

——
package com.bbdj.samples.breel;

import net.rim.device.api.system.ApplicationManager;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

class BReelMovieElementScreen extends MainScreen implements FieldChangeListener
{
//menu items
private MenuItem _deleteItem = new MenuItem("Delete", 500000, 500000) {
public void run() {
doDelete();

}
};

private MenuItem _saveItem = new MenuItem("Save", 500000, 500000) {
public void run() {
//only close the screen if the save was successful
if (onSave()) {
close();

}
}

};

//variables
private BReelMovieElement _element;
private boolean _updated;
private boolean _isNew;

//field variables
BasicEditField _titleField;
BasicEditField _prodCompanyField;
BasicEditField _lentToField;
ObjectChoiceField _genreChoiceField;
ObjectChoiceField _formatChoiceField;
ObjectChoiceField _lentChoiceField;

BReelMovieElementScreen() {
this(new BReelMovieElement(), true);

}
——

More of the basics start this scene, with a few small sur-
prises. Like the previous screen we are again extending
MainScreen, but this time we are implementing a Field-
ChangeListener which will add some excitement to the story

shortly. Basic menu declarations and variables used in the
class along with the screen's fields. The last part shows a
constructor which seems to be leading to something bigger.

Volume 3, Issue 1 16 BlackBerry Developer Journal

——
BReelMovieElementScreen(BReelMovieElement element, boolean isNew) {
_element = element;
_isNew = isNew;

setTitle("B Reel Movies");

//make sure we have no null strings
String title = _element.getMovieTitle();
String prodCompany = _element.getProdCompany();
String lentTo = _element.getLentTo();
int genreChoice = _element.getGenre();
int formatChoice = _element.getFormat();
boolean lentChoice = _element.getLentOut();

//add the fields to the screen according to the element data
_titleField = new BasicEditField("Title: ", title, BasicEditField.DEFAULT_MAXCHARS,
BasicEditField.NO_NEWLINE);

add(_titleField);

_prodCompanyField = new BasicEditField("Film Company: ", prodCompany,
BasicEditField.DEFAULT_MAXCHARS,
BasicEditField.NO_NEWLINE);

add(_prodCompanyField);

String genreChoices[] = {"Horror", "Drama", "Sci-Fi", "Comedy", "Action"};
_genreChoiceField = new ObjectChoiceField("Genre: ", genreChoices, genreChoice);
add(_genreChoiceField);

String formatChoices[] = {"DVD", "VHS"};
_formatChoiceField = new ObjectChoiceField("Format:", formatChoices, formatChoice);
add(_formatChoiceField);

String lentChoices[] = {"No", "Yes"};
_lentChoiceField = new ObjectChoiceField("Lent Out:", lentChoices,
(!lentChoice ? 0 : 1));

_lentChoiceField.setChangeListener(this);
add(_lentChoiceField);

if (lentChoice) {
_lentToField = new BasicEditField("Lent To: ", lentTo,
BasicEditField.DEFAULT_MAXCHARS,
BasicEditField.NO_NEWLINE);

add(_lentToField);
}

//add the menu items
addMenuItem(_saveItem);

if (!_isNew) {
addMenuItem(_deleteItem);

}
}

——

While it might seem like there is a lot of code, everything
that occurs in this constructor is pretty basic. The main pur-
pose is to create the fields and add them to the screen with
pre-populated information depending on the calling con-
structor. There are a few things to point out here. The

_lentToField is only displayed if the movie is lent out, and
the delete menu item is only added if we have opened a
movie from the previous screen.

Volume 3, Issue 1 17 BlackBerry Developer Journal

——
public void close() {
if (_updated) {
ApplicationManager.getApplicationManager().postGlobalEvent(BReelScreen.SCREEN_UPDATE);

}
super.close();

}

/**
 * Deletes the element from the list
 */
/* package */ void doDelete() {
int answer = Dialog.ask(Dialog.D_DELETE);

if (answer == Dialog.DELETE) {
BReelMovieList list = BReel.getInstance().getList();
list.remove(_element);
_updated = true;
close();

}
}

public boolean onSave() {
//get the data from the screen
BReelMovieElement newElement = new BReelMovieElement();
String title = _titleField.getText();

//if the title is blank then we can't save
if (title == null || title.length() == 0) {
Dialog.inform("Cannot have a blank title!");
return false;

}

newElement.setMovieTitle(title);
newElement.setProdCompany(_prodCompanyField.getText());

newElement.setGenre(_genreChoiceField.getSelectedIndex());
newElement.setFormat(_formatChoiceField.getSelectedIndex());

if (_lentChoiceField.getSelectedIndex() == 1) {
newElement.setLentOut(true);

}

if (newElement.getLentOut()) {
newElement.setlentTo(_lentToField.getText());

}

//remove the old element and add the new one
BReelMovieList list = BReel.getInstance().getList();
list.remove(_element);
list.add(newElement);
_updated = true;

return true;
}

——

The three methods above are a combination of overriding the
screen’s default methods for additional functionality and
adding our own method for the delete function. Closing this
screen will fire an update to the BReelScreen, but only if the
element has been saved, or deleted. The delete method dis-

plays a confirmation dialog so that the user doesn't acciden-
tally delete the element. The onSave() is just responsible for
pulling the information from the fields on the screen and
dropping it into our BReelMovieList. It should be pointed

Volume 3, Issue 1 18 BlackBerry Developer Journal

out that the element can't be saved if the movie title is blank.
That's just some artistic flavoring, and is not necessary for
your application.

——
///
// Implementation of FieldChangeListener //
///

public void fieldChanged(Field field, int context) {
//the listener is only added the a choice field, so cast it
ObjectChoiceField choiceField = (ObjectChoiceField)field;

//if the choice is 0 (NO) clear the field
if (choiceField.getSelectedIndex() == 0) {
getDelegate().delete(_lentToField);
_lentToField = null;

} else if (choiceField.getSelectedIndex() == 1) { //if the choice is 1 (YES), add the field
_lentToField = new BasicEditField("Lent To: ", "", BasicEditField.DEFAULT_MAXCHARS,
BasicEditField.NO_NEWLINE);

add(_lentToField);
}

}
}
——

That's it! Oh wait, watch the credits, and hidden in the cred-
its is our implementation of the FieldChangeListener. The
lent out field is an ObjectChoiceField which lets the user
toggle between YES or NO. When the field is changed to
YES, the listener is notified of the change event, and the
lentToField is added to the screen. When the field is changed
to NO, the field is removed from the screen.

Yes. You have reached the end of the story and the applica-
tion is complete, so get your thumbs ready to type your
movie collection into your BlackBerry device. And as
always in the movie business these days TO BE CONTIN-
UED…….Watch for B Reel II: Attack of the Feature
Enhancements.

Volume 3, Issue 1 19 BlackBerry Developer Journal

IPD File Format
Garry Seifried, Research In Motion

Note: The format of IPD files described in this article may
change at any time at the sole discretion of Research In
Motion. Research In Motion will not provide technical
support on issues related to IPD files and their format.

The Need for Speed
One of the challenges of working with wireless applications
is that delivering large amounts of data over the wireless net-
work can be both time-consuming and expensive.

Suppose that you want to put the contact information for an
organization on the BlackBerry wireless device. Normally,
we only put the most essential data on the device, and wire-
lessly pull additional less-essential data as may be needed.

Let’s assume, for the sake of this article, that the entire set of
contact information is required.

BlackBerry Desktop Manager Backup/Restore
We’ve all used the BlackBerry Desktop Manager to perform
backup of our device data - perhaps prior to performing an
upgrade to the device software. Periodically, we’ve also
needed to use that backup to restore our data. But have you
ever had a look inside one of those IPD files?

That’s one nasty looking file!

Using the IPD Format for Bulk Loads
What if the most effective and efficient way of getting a
large amount of data onto the device were to use the IPD for-
mat? Using this format, we could programmatically create a
file that could be used by the desktop manager in a restore
operation.

The structure of the IPD file shown above is as follows:

Inter@ctive Pager Backup/Restore File
<Line feed> - 1 byte - value 0A
<Version> - 1 byte - value 02
<Number of databases in file> - 2 bytes
<Database name separator> - 1 byte - value 00
<Database name block#1>
<Database name block#2>
.
<Database name block#n>
<Database data block#1>
<Database data block#2>
.
<Database data block#n>

Where each database name block is of the form:

And each database data block is of the form:

Parse that IPD
In manually parsing the file, we can see some structure that
matches the binary structure just outlined:

Number of databases: 57
Database[0] = Content Store
Database[1] = Service Book
.

<Database name length> 2 bytes
The length includes the
terminating null

<Database name> As long as the name length

<Database ID> 2 bytes
Zero-based position in the
list of database name
blocks

<Record length> 4 bytes

<Database version> 1 byte

<DatabaseRecordHandle> 2 bytes

<Record unique ID> 4 bytes

<Field length #1> 2 bytes

<Field type #1> 1 byte

<Field data #1> As long as the field length

<Field length #m> 2 bytes

<Field type #m> 1 byte

<Field data #m> As long as the field length

Volume 3, Issue 1 20 BlackBerry Developer Journal

Database[56] = WTLS Options

Record for database 0:
Database version: 0x01
Record handle: 0x0001
Unique ID: 0x24F07B6D
Field:
Length: 0x0002
Type: 0x01
Data:
2F 00

Field:
Length: 0x0004
Type: 0x03
Data:
21 00 00 20 /

Field:
Length: 0x0007
Type: 0x05
Data:
66 6F 6C 64 65 72 00 folder

Record for database 0:
Database version: 0x01
Record handle: 0x0002
Unique ID: 0x00000007
Field:
Length: 0x0007
Type: 0x01
Data:
2F 68 6F 6D 65 2F 00 /home/

Field:
Length: 0x0004
Type: 0x03
Data:
31 00 00 20

Field:
Length: 0x0007
Type: 0x05
Data:
66 6F 6C 64 65 72 00 folder

Limits in the IPD Format
IPD files have a record length restriction of 128K bytes. To
get around this limitation, we came up with a record struc-
ture that would separate the content into separate records
each under the 128K limit.

The Unique ID values map to this record type mapping for
the eight record types:

SESSION_TYPE = 1
TRACK_TYPE = 3
SPEAKER_TYPE = 5
SESSION_TRACK_TYPE = 7
TRACK_SESSION_TYPE = 9
KEYNOTE_LIST_TYPE = 10 (0A)
DAY_SESSION_TYPE = 11 (0B)
SESSION_SPEAKER_TYPE = 13 (0D)

This is how the records appear in the file (fields omitted):

Number of databases: 1
Database[0] = BBConferenceGuideData
Record for database 0:
Database version: 0x01
Record handle: 0x0001
Unique ID: 0x00000001

Record for database 0:
Database version: 0x01
Record handle: 0x0008
Unique ID: 0x0000000D

What is the relationship to a Session record as defined in this
structure versus an instance of a Session record from a data-
base? We used the fields of the IPD record for each occur-
rence of a session.

Writing the Length Before the Content
Since you need to output the record length before the record
content, you must process the content first and then get the
content length.

This is done by creating an intermediate file that contains the
content. The method that closes the file must also return the
content length.

After writing the content length, append the intermediate file
content to the final IPD file.

This also applies to the content in a record, such as an image
that needs to be processed to determine the length of the im-
age content. There is some extra overhead in processing
content twice but it is only done while creating the file where
overhead doesn’t impact much.

Little Endian Hex Values
Lengths are stored in little endian format. This means that
the low-order byte of the number is stored at the lowest ad-
dress, and the high-order byte at the highest address (the
word is stored ‘little-end-first’).

The little-endian format applies to the following fields:

• record length
• db version
• db handle
• record type.
The following conversion is used to get the byte values:

//Size as little-endian hex value
byte b1 = Convert.ToByte
(size&Byte.MaxValue);

byte b2 = Convert.ToByte
(size>>8&Byte.MaxValue);

byte b3 = Convert.ToByte
(size>>16&Byte.MaxValue);

byte b4 = Convert.ToByte
(size>>24&Byte.MaxValue);

Volume 3, Issue 1 21 BlackBerry Developer Journal

After conversion, each byte is written in order:

loader.write(b1);
loader.write(b2);
loader.write(b3);
loader.write(b4);

Using the Simulator for Backup/Restore
Prior to BlackBerry Java Development Environment (JDE)
v4.0, simulator testing configuration for backup/restore re-
quired the installation of a serial loopback driver to be de-
fined for a port (say PORT5) as well as few other steps.

With BlackBerry JDE v4.0, the BlackBerry Device Simula-
tor provides a direct and convenient way for backup/restore
testing:

• Launch the BlackBerry Device Simulator
• Select the Simulate menu
• Check the USB Cable Connected.

Application Handling the Restore
Performing Backup/Restore involves the BlackBerry Syn-
chronization API. The Synchronization API provides the fol-
lowing interfaces that need to be implemented:

SyncConverter

• Converts data between SyncObject-format on the device
and a serialized format required on the desktop.

SyncCollection

• A collection of synchronization objects.
SyncObject

• An object that can be backed up and restored to the
user’s computer.

SyncConverter and SyncCollection Manager
SyncConverter and SyncCollection are interfaces, so we
chose to implement the interfaces in a DataStoreSyncMan-
ager class.

DataStoreSyncManager
implements SyncCollection

Since a SyncCollection is a collection of SyncObject used
for backup/restore and synchronization, we need to provide
implementations for the methods defined in the SyncCollec-
tion interface.

Notable methods include:

beginTransaction()

• Starts a transaction which is required to execute syn-
chronizations that involve a large number of data
records

endTransaction()

• Ends a transaction which is required to execute synchro-
nizations that involve a large number of data records

getSyncConverter()

• Returns the instance of the DataStoreSyncManager
getSyncName()

• Returns the database name
getObjectCount()

• Returns the number of sync objects
getSyncObjects()

• Returns a SyncObject[]
getSyncObject(int uid)

• Returns a SyncObject by UID
getSyncVersion()

• Returns 1
removeAllSyncObjects()

• Clears the DataStore object and returns true
addSyncObject()

• Adds a SyncObject to the DataStore by using the UID to
identify the data type, and using the DataStore methods
for the appropriate data type (e.g. setSessionSpeaker()
method)

Since we are performing a bulk-load and not a synchroniza-
tion, we can provide minimal implementations as shown be-
low for some of the methods. For a backup/restore, we can
return false; for Synchronization you must provide a full im-
plementation.

isSyncObectDirty () {return false; }
removeSyncObject () { return false; }
setSyncObjectDirty() {}
clearSyncObjectDirty() {}

Volume 3, Issue 1 22 BlackBerry Developer Journal

DataStoreSyncManager
implements SynchConverter

This class implemented the convert(..) method that Extracts
a SyncObject from the synchronization data and converts a
SyncObject into synchronization data.

DataStoreSyncObject
implements SyncObject

The application needs to have a class defined that represents
the structure of the .IPD database records. For our example,
eight record types have been defined in our database, so we
effectively have eight instances of SyncObjects.

A SyncObject must have a unique ID, which is a 32-bit value
that is contant for the lifetime of the object. For this UID we
implement a getUID() method that returns a value for one of
the record types. For example, SESSION_TYPE = 1 as de-
fined above.

PersistentStore contains Persistable objects
Since we’ve gone to the trouble of getting the data to the de-
vice, we now have to save it to the PersistentStore. To do so,

implement a class that extends the Persistable interface.
Again, the structure of the DataStore class needs to reflect
the structure of the data contained in the .IPD file.

In our example, we have eight different data records defined
so we will need a DataStore class capable of managing those
eight different data types.

We chose to have byte[][] for Session, Track and Speaker da-
ta as the records contained character data.

For SessionTrackMap, TrackSessionMap, DaySessionMap,
SessionSpeakerMap we chose int[][] since we had relation-
ships expressed as integer index values.

For KeyNoteSessionList we chose int[] as we only had the
Session index value in the list. So we have a DataStore struc-
ture on the device that supports the .IPD format.

The implementation of methods to access the particular
records and record relationships is up to the designer of the
application. In our case, we designed the data to support the
application UI so that we had methods for Sessions, Session-
Speakers, KeyNoteSpeakers, Tracks, etc.

Sample Code

Loader.cs

Contains the data retrieval and data output code.

namespace BulkLoader {
/// <summary>
/// Summary description for Class1.
/// </summary>
class Loader {
// Constants for record types - session shown here
public static int SESSION_NUMBER_TYPE = 0;
public static int SESSION_TYPE = 1;

public void doLoading() {
// Create output file and content
byte dbVersion = 1;
short dbHandle = 0;

// Final output written to Loader1
Loader loader1 = new Loader();
loader1.createFile("BulkLoad-Output.ipd");

// Prefix data for every IPD file
loader1.loadFile("BulkLoad-Prefix1.ipd");

// Data access provided by DBReader
DBReader rdr = new DBReader();

// Intermediate data written to BulkLoad-Data.ipd files
Loader loader = new Loader();
loader.createFile("BulkLoad-Data.ipd");
dbHandle++;

// An ArrayList of SessionInfo objects turned into SessionContent
ArrayList list = rdr.GetSessions();
int listSize = list.Count;
SessionContent sessions = new SessionContent(listSize);

Volume 3, Issue 1 23 BlackBerry Developer Journal

for (int i=0;i<listSize;i++) {
SessionInfo info = (SessionInfo) list[i];
Session data = new Session(info);
sessions.AddMember(i, data);

}

if (listSize>0) {
sessions.WriteInfo(loader);

}

// Get the size so far and output
int bytes = loader.closeFile();
OutputData(loader1, bytes, dbVersion, dbHandle, SESSION_TYPE);

}

/**
 * Create output from the data
 */
private void OutputData(Loader loader, int bytes, byte dbVersion,
short dbHandle, int recordType) {

// Database type
short dbase = 0;
loader.Write(dbase);

// Add the size of the Prefix2 portion which is 7 bytes
bytes+=7;

// Write the size as little-endian hex values
byte b1 = Convert.ToByte(bytes&Byte.MaxValue);
byte b2 = Convert.ToByte((bytes>>8)&Byte.MaxValue);
byte b3 = Convert.ToByte((bytes>>16)&Byte.MaxValue);
byte b4 = Convert.ToByte((bytes>>24)&Byte.MaxValue);
loader.Write(b1);
loader.Write(b2);
loader.Write(b3);
loader.Write(b4);

// DBVersion - append as little-endian hex values
b1 = Convert.ToByte(dbVersion&Byte.MaxValue);
loader.Write(b1);

// DBHandle - append as little-endian hex values
b1 = Convert.ToByte(dbHandle&Byte.MaxValue);
b2 = Convert.ToByte((dbHandle>>8)&Byte.MaxValue);
loader.Write(b1);
loader.Write(b2);

// RecordType - append as little-endian hex values
b1 = Convert.ToByte(recordType&Byte.MaxValue);
b2 = Convert.ToByte((recordType>>8)&Byte.MaxValue);
b3 = Convert.ToByte((recordType>>16)&Byte.MaxValue);
b4 = Convert.ToByte((recordType>>24)&Byte.MaxValue);
loader.Write(b1);
loader.Write(b2);
loader.Write(b3);
loader.Write(b4);

// Data Content
loader.loadFile("BulkLoad-Data.ipd");

}
}

Volume 3, Issue 1 24 BlackBerry Developer Journal

Content.cs

Contains definitions for the IPD file content: Session, Tracks, Speakers.

Session items are shown here.

using System;
using System.Collections;
using System.IO;
using System.Text;

namespace BulkLoader {

/**
 * MapContent defines the Record Group: Length, Type, length value that prefixes every record.
 */
public abstract class MapContent {
short length;
protected byte type; // Record type
protected int[] members; // Used for Record length

public MapContent() {}

public void SetContentLength(int len) {
length = Convert.ToInt16(len);

}

public void AddContentMember(int pos, int item) {
if (members != null) {
members[pos] = item;

}
}

/// <summary>
/// Our objects need to know how to write themselves
/// </summary>
/// <param name="loader"></param>
protected void WriteContentMember(Loader loader) {
loader.Write(length);
loader.Write(type);
int j = members.Length;

for (int i=0; i<j;i++) {
loader.Write((int) members.GetValue(i));

}
}

}

/**
 * SessionContent, Session and SessionInfo manage Sessions.
 */
public class SessionContent : MapContent {
Session[] info;

/// <summary>
/// Ctor defines the size of Session[]
/// </summary>
public SessionContent(int num) {
type = Convert.ToByte(Loader.SESSION_NUMBER_TYPE);
info = new Session[num];
members = new int[1];

}

Volume 3, Issue 1 25 BlackBerry Developer Journal

/// <summary>
/// Add an item to the list
/// </summary>
public void AddMember(int pos, Session data) {
info[pos] = data;

}

/// <summary>
/// Our objects need to know how to write themselves
/// </summary>
/// <param name="loader"></param>
public void WriteInfo(Loader loader) {
// Content setup
SetContentLength(4);
AddContentMember(0, info.Length);
WriteContentMember(loader);
IEnumerator e = info.GetEnumerator();

while (e.MoveNext()) {
Session data = (Session) e.Current;
data.WriteInfo(loader);

}
}

}

/// <summary>
/// Session provides the infoType, length and SessionInfo
/// </summary>
public class Session {
short infoLength;
byte infoType = Convert.ToByte(Loader.SESSION_TYPE);
SessionInfo info;

public Session(SessionInfo data) {
info = data;
infoLength = Convert.ToInt16(info.Length());

}

/// <summary>
/// Our objects need to know how to write themselves
/// </summary>
/// <param name="loader"></param>
public void WriteInfo(Loader loader) {
loader.Write(infoLength);
loader.Write(infoType);
info.WriteInfo(loader);

}
}

/// <summary>
/// SessionInfo contains the details of a session
/// </summary>
public class SessionInfo {
long start;
long duration;
byte keynote;
string info;

public SessionInfo(long start, long duration, byte keynote, string info) {
this.start = start;
this.duration = duration;
this.keynote = keynote;
this.info = info;

}

Volume 3, Issue 1 26 BlackBerry Developer Journal

/// <summary>
/// The length is the size of the SessionInfo object
/// </summary>
/// <returns></returns>
public short Length() {
return Convert.ToInt16(8 + 8 + 1 + info.Length);

}

/// <summary>
/// Our objects need to know how to write themselves
/// </summary>
/// <param name="loader"></param>
public void WriteInfo(Loader loader) {
loader.Write(start);
loader.Write(duration);
loader.Write(keynote);
loader.Write(info);

}
}

Loader.cs

This class is responsible for output of data using a BinaryWriter.
Methods exist to write various data types: char, int, byte, short, long, String.

using System;
using System.IO;
namespace BulkLoader {

/// <summary>
/// Loader manages Binary files.
/// </summary>
public class Loader {
// Our writer
BinaryWriter writer = null;

// Output length counter
int bytes = 0;

public Loader() {}

/// <summary>
/// Create BinaryWriter from a filename
/// </summary>
/// <param name="fileName"></param>
public void createFile(String fileName) {
try {
writer = new BinaryWriter(File.Open(fileName, FileMode.Create));

} catch (Exception e) {
Console.Out.WriteLine("Exception: " + e.Message);

}
}

/// <summary>
/// Load a file
/// </summary>
/// <param name="fileName"></param>
public void loadFile(String fileName) {
if (fileName.Length==0){
return;

}

loadFile(fileName, false);
}

Volume 3, Issue 1 27 BlackBerry Developer Journal

/// <summary>
/// Load a file, counting the bytes of the file
/// </summary>
/// <param name="fileName"></param>
/// <param name="countBytes"></param>
public void loadFile(String fileName, bool countBytes) {
if (fileName.Length==0){
return;

}

BinaryReader rdr = null;

Try {
rdr = new BinaryReader(File.OpenRead(fileName));
byte b;

for (;;){
b = rdr.ReadByte();
writer.Write(b);

if (countBytes){
bytes++;

}
}

} catch (EndOfStreamException) {
; // do nothing

}
finally {
if (rdr != null) rdr.Close();

}
}

/// <summary>
/// Close an intermediate file and return the file size
/// </summary>
/// <returns>file size</returns>
public int closeFile() {
if (writer != null) {
try {
writer.Close();

} catch (Exception e) {
Console.Out.WriteLine("Exception: " + e.Message);

}
}
return bytes;

}

/// <summary>
/// Write a char - 1 byte
/// </summary>
/// <param name="val"></param>
public void Write(char val) {
writer.Write(val);
bytes+=1;

}

/// <summary>
/// Write an int - 4 bytes
/// </summary>
/// <param name="val"></param>
public void Write(int val) {
writer.Write(val);
bytes+=4;

}

Volume 3, Issue 1 28 BlackBerry Developer Journal

/// <summary>
/// Write a short - 2 bytes
/// </summary>
/// <param name="val"></param>
public void Write(short val) {
writer.Write(val);
bytes+=2;

}

/// <summary>
/// Write a byte - 1 byte
/// </summary>
/// <param name="val"></param>
public void Write(byte val) {
writer.Write(val);
bytes+=1;

}

/// <summary>
/// Write a long - 8 bytes
/// </summary>
/// <param name="val"></param>
public void Write(long val) {
writer.Write(val);
bytes+=8;

}

/// <summary>
/// Write a String - string length
/// </summary>
/// <param name="val"></param>
public void Write(string val) {
Write(val, val.Length);

}

/// <summary>
/// Write a String - string length
/// </summary>
/// <param name="val", "len" ></param>
public void Write(string val, int len) {
StringReader rdr = new StringReader(val);

for (int i=0;i<len;i++) {
int c = rdr.Read();
writer.Write(Convert.ToByte(c));
bytes++;

}
}

Volume 3, Issue 1 29 BlackBerry Developer Journal

The BlackBerry Graphical User Interface:
Part 2 - Direct Screen Drawing

Mark Sohm, Research In Motion

In part one of this two part series we explored the many dis-
playable objects that are present in the BlackBerry API set.
These include Screens, Managers and Fields. By using these
components and containers, it is possible to create an inter-
face that looks and feels like a standard application for a
BlackBerry wireless device. However, there are cases where
you may want to deviate from the norm to provide a custom
field, a custom image or some kind of animation. Part two of
this series explores the use of the Graphics class (net.rim.de-
vice.api.ui.Graphics) to draw directly to a screen or field.

There are two main areas where the Graphics class is typical-
ly used: at the field level and the screen level. Drawing at the
field level allows you to create a unique field such as a cus-
tom looking button or a graph. Drawing at the screen level
allows full control of the screen and what is presented to the
user. This approach is typically used for applications that
make use of animation or multimedia content, such as games
and graphic demos.

The Graphics class
Whether creating a custom screen or a custom field, the bulk
of the work of the Graphics class is performed in the paint
method of the Field class (remember that the Screen class
extends Field). A device invokes the paint method when a
field, or part of the field, is to be redrawn.

The paint method can be overridden to allow the creation of
a custom field, or to modify an existing field. One of the sim-
plest things we can do by overriding the paint method is to
change the colour used. For example we can change the text
colour of a RichTextField to green by doing the following:

//Green - The format for colour is 0x00RRGGBB.
Long myColour = 0x00008800;

RichTextField colourChange =
new RichTextField
("The quick brown fox jumps over the
lazy dog.")

{
public void paint(Graphics graphics)
{
//Change the colour of the text in
//the RichTextField to green.
graphics.setColor(myColour);
//call super.paint() to carry out the
//default painting of the field
super.paint(graphics);

}
};

We can also change values used within the paint method be-
tween calls to paint to create animation. Continuing from the
sample above we could do the following:

//Change the colour to red.
myColour = 0x00FF0000;
colourChange.invalidate();

You can force a field, or part of a field, to be redrawn by in-
voking one of its invalidate methods. Calling the invalidate()
method will mark the entire field as invalid by instructing the
entire field to be redrawn. Calling invalidate(int x, int y, int
width, int height) allows you to mark a certain region of a
field as invalid. This can speed up painting if only a certain
area of a field has changed, as only the region specified will
be redrawn. This can provide a substantial performance in-
crease for large fields, or fields that are redrawn in rapid suc-
cession such as when performing animation.

Drawing graphics with Graphics
Now it's time to create some graphics with Graphics! The
approach you take to create your graphics should vary based
on their usage pattern. Overriding the paint method for a
field or screen that changes often - such as during an anima-
tion - works great but is less desirable when creating an im-
age that may rarely change but will be reused throughout an
application. Here is an example of creating a dynamic Bit-
map that is used to populate a BitmapField. In this example
we create a Bitmap that contains a large purple square and a
green circle.

//Instantiate a bitmap 100x100 pixels in size.
Bitmap myBitmap = new Bitmap(100, 100);

Graphics myGraphics = new Graphics(myBitmap);

//Change the colour to purple.
myGraphics.setColor(0x00550055);

//Draw a filled rectangle starting at 0,0
//that is 100 pixels square.
myGgraphics.fillRect(0, 0, 100, 100);

//Change the colour to green.
myGraphics.setColor(0x00004400);

//Draw a filled circle that has a radius of 25.
myGraphics.fillArc(50, 50, 25, 25, 0, 360);

//Instantiate a BitmapField with the
//created bitmap.
BitmapField myBitmapField =
new BitmapField(myBitmap);

Volume 3, Issue 1 30 BlackBerry Developer Journal

This technique allows us to store the bitmap and display it
again in other areas at a later time. If the image is fairly de-
tailed and requires multiple calls to several of the graphics
methods, you can save some processing time by creating the
image once and reusing it. This could be faster than recreat-
ing an image every time by using graphics methods from
within the paint method and allows you to reuse the existing
bitmap image.

Although ideal for images that remain fairly constant, this
approach is not optimal for highly dynamic content.

Animation!
Animation used by a game or multi-media application can
push any device to its limits. Whether you are using a desk-
top PC, laptop or a mobile device such as a BlackBerry de-
vice you want to ensure that you squeeze the most out of the
platform. The remainder of this article will explore using the
Graphics class and other BlackBerry APIs to create and opti-
mize an animated sequence.

The following images depicts some of the animation we are
going to dissect. The complete source code for this applica-
tion is available for download.

The calculations and drawing of the animation take place in
the AnimationScreen class. AnimationScreen extends
FullScreen and contains a thread called AnimationThread.
AnimationThread controls what is drawn in each frame, per-

Volume 3, Issue 1 31 BlackBerry Developer Journal

forms all of the manipulation calculations and calls invali-
date to repaint the screen.

There are three png images included in the application.

One image contains a single brick used to build the house:

Another holds the roof:

A third contains the sun, cloud and each frame of the runner
(there are 6 runner images in total). The sun, cloud and run-
ner are all of the same height, which allows us to easily place
them side-by-side in a rectangular image.

As discussed in the BlackBerry Developer Journal article
(Volume 2, Issue 1, Jan-2005), Rooster Revealed!, this al-
lows for a size reduction. It reduces the overhead (image
headers, meta-data, etc.) that would exist if all 8 elements
were in their own image and helps reduce the application
size. When everything is complete the total size of the appli-
cation including images is only 17.6 kb. The images are de-
fined as members of the AnimationScreen class.

private final static Bitmap _imageItems =
Bitmap.getBitmapResource("imageItems.png");

private final static Bitmap _brick =
Bitmap.getBitmapResource("brick.png");

private final static Bitmap _roof =
Bitmap.getBitmapResource("roof.png");

The paint method of FullScreen - which is inherited from the
Screen, then Field class - is overridden to allow us to draw
directly to the screen. Let's take a look at some of the Graph-
ics methods that are used to draw the scene.

The first thing we do in the paint method is obtain the screen
dimensions. The dimensions can be used to scale aspects of
the animation and make use of all available screen real es-
tate. The animation is designed to not leave any blank areas
along the top, bottom or sides of the screen on high resolu-
tion BlackBerry devices but still fit on the screen on Black-
Berry devices that have a smaller screen resolution.

int width = Graphics.getScreenWidth();
int height = Graphics.getScreenHeight();

We also define four integers that are used in counters, for
loops and as holders for calculations for x and y values used
in the application.

int count, count2;
int tempX, tempY;

Storing these in a defined variable can be more efficient than
calculating them inline, as the inline calculation will create a
temporary int variable for each calculation. This would re-
sult in the creation of a lot of garbage that can add up quickly
in a loop, and even faster in a loop inside the paint method
that is called repeatedly during the animation. In the sample
code below we also save two arithmetic operations by stor-
ing the result in a variable. An example of both the recom-
mended and improper methods follow.

Note: The following code example is not part of this
application

//Inline calculations (BAD!):
graphics.fillRect(0, width - 10, width, 10);
graphics.fillRect(0, width - 10, width, 20);
graphics.fillRect(0, width - 10, width, 30);
...

//Use defined variables (GOOD!):
tempY = width - 10;
graphics.fillRect(0, tempY, width, 10);
graphics.fillRect(0, tempY, width, 20);
graphics.fillRect(0, tempY, width, 30);
...

Moving back to the animation, the first element we draw is
the grass. We set the drawing colour to green and use the fill-
rect method to draw a painted rectangle at the bottom of the
screen. The rectangle is 10 pixels high and the width of the
screen, and is placed at the bottom of the screen.

//Set the colour to green
graphics.setColor(0x00008800);

//Draw the grass.
tempY = height - 10;
graphics.fillRect(0, tempY, width, 10);

The next element drawn is the sun. The sun is placed at the
same coordinates regardless of the screen resolution. The
sun is part of the imageItems bitmap which also contains the
cloud and all 6 runner frames. The sun is 43 pixels wide, 40
pixels tall and starts 170 pixels from the left of the image.
We use the drawBitmap method and only draw the portion of
the imageItems bitmap that contains the sun.

graphics.drawBitmap
(20, 10, 37, 40, _imageItems, 170, 0);

Now it is time to draw the house. The first item we tackle is
the house wall. Since we are using an image that contains a
single brick, it must be drawn multiple times to make up the
entire house wall. This is done using two loops that repeated-
ly call the drawBitmap method. Here we pre-populate the
count variable and decrement in each loop. Comparing to 0
is faster than comparing to another value, and pre-decre-
menting count (--count) is also faster than post-decrementing
(count--).

for(count = 8; count > 0; --count)
{
for (count2 = 5; count2 > 0; --count2)
{
//The x coordinate.

Volume 3, Issue 1 32 BlackBerry Developer Journal

tempX = 220 - count2 * 20;

//The y coordinate.
tempY = height -10 - count * 10;

//Draw a brick.
graphics.drawBitmap
(tempX, tempY, 20, 10, _brick, 0, 0);

}
}

The remainder of the house (roof, window and door) is
drawn next. The roof is drawn using drawBitmap, the door
using fillRect and fillArc and the window using fillRect.
These methods have been used in the sample on page one of
this article, so the code is not shown in this article. If you
would like to see how they are drawn, the complete source
code is available for download. The clouds and runner are al-
so drawn using drawBitmap, so we'll move past them and
onto the lightning.

The lightning is not shown on every frame. Before starting to
draw the lightning we check to ensure the drawLightning
variable is true (this value is changed in the Animation-
Thread that controls the animation sequence). There are mul-
tiple calls used to make up the bolt of lightning, but the only
new one is the drawLine method.

graphics.drawLine(100, 30, 110, 45);

The drawLine method accepts four ints. The first two are the
x and y coordinates for the start point of the line and the sec-
ond two are the x and y coordinates for the end point of the
line.

Now that the paint method was drawing what was required
and the AnimationThread was set up to control the sequence,
it was time to see how everything looked. Part of the goal of
this application was also to see how efficient we could make
the application and see how quickly the animation could run.
I think this goal was realized. It started off chugging along,
but after all optimizations were complete I actually had to
slow it down by inserting some sleep cycles. Let's see what
we can do to speed up the frame rate on a BlackBerry device.

Optimizing to get the maximum frame rate
The first step in optimizing the application was to ensure that
the recommendations from the Java Bits and Pieces articles
from previous BlackBerry Developer Journal issues had
been applied. With these in place the animation was able to
move along at an average rate of 17 frames per second on a
BlackBerry 7100 Series device running BlackBerry Device
Software v4.0. Now it was time to refine the graphics to get
things drawing faster.

The first step implemented was to control what is drawn on
the screen each frame and only redraw elements that are
changing. This meant adding controls to allow the applica-
tion to toggle each element from being drawn or not. For ex-
ample, in most frames the sun, clouds and house don't
change. Therefore it is a waste of processing to redraw them
every frame. The drawBitmap method calls were taking the
most time, so they were first on the list to optimize.

By controlling on what frames the sun and clouds were
drawn - removing them from any frames where they don't
change - the animation sped up from 17 to 25 frames per sec-
ond, a significant increase! After adding controls for the
house, we moved up to 34 frames per second, shaving 400
ms off the total animation time. Not bad when all of the ani-
mation calculations took less than 2 seconds!

After making changes to control what was drawn on each
frame, we have to dig deeper to see what we can do to
squeeze an even higher frame rate out of the BlackBerry de-
vice. By optimizing the paint method to only draw what is
needed, we save time on calls we are making to the Graphics
methods.

However, the entire screen is still being redrawn every time
the invalidate method is called. In many frames, only a small
area of the screen is changing, such as the clouds moving
across the sky or the runner running off the screen. By mak-
ing use of the invalidate(int x, int y, int width, int height)
method we can specify a rectangular region of the screen to
invalidate. Areas outside of this region will not be redrawn,
which can save us some more calculation time. This change
isn't appropriate in all frames, such as the full screen yellow
flashes during the lightning strike, but can be used in most
frames.

After analyzing each frame, the generic invalidate methods
were replaced with invalidate (int, int, int, int). The screen
coordinates were relatively easy to figure out, as they
matched coordinates already used in the paint method. After
making this change the calculation time was dropped to just
over a second, achieving an amazing 51 frames per second!

Watching the show
With the animation sequence complete and optimized, the
only thing left was to sit back and watch what's been created.
As you can see, the BlackBerry API set does allow for the
creation of some interesting graphical or animated content.
All it takes is a bit of testing and tweaking to optimize your
content and really make things fly. Hopefully you can now
take the concepts detailed in this article and create some tru-
ly amazing content. After all, there is only so much my stick-
man-level art capabilities can do.

Please email your comments, suggestions and editorial submissions to Editor@BlackBerryDeveloperJournal.com

Volume 3, Issue 1 33 BlackBerry Developer Journal

Using WBXML Parsing to
Send Data to Wireless Devices

Rohit Gupta, Research In Motion

The growing popularity and corporate usage of BlackBerry
means that an increasing number of organizations are pro-
viding wireless access to corporate data for their mobile
workers. Although this can have productivity benefits, the
cost of transmitting information wirelessly is a consideration
when organizations decide which applications and informa-
tion to make available to their BlackBerry users.
XML is useful for representing complex data in a simplified
way that can be displayed in any application. Unfortunately,
XML is not always practical to use in wireless environments
because XML files tend to be large documents. Transmitting
large documents over wireless networks can be costly and
time-consuming for users who are downloading information
on a wireless device. Wireless binary XML (WBXML)
offers a cost-saving alternative to XML documents.
WBXML replaces the customized XML tags with a binary
value, which significantly decreases the file size. WBXML
incorporates the advantages of XML without the disadvan-
tages of the large file size.

Understanding XML

XML is designed to provide more flexible and adaptable
information identification. It is extensible because it is not a
fixed format like HTML. Instead, XML is a meta language -
a language for describing other languages - that allows you
to design your own customized markup language for differ-
ent types of documents.

Advantages of using XML to code data

With XML, application developers can represent complex
data in a simple manner. They can completely define their
data in XML because it provides fully customized tags.
There are no pre-defined or hard-coded tags like HTML.
Some of the advantages of using XML to represent data
include:

• XML, like Java, is viewed as open source. This means
that any application can open an XML document and
display its contents.

• XML is as easy to read and write as HTML.

• XML files take approximately the same amount of time
to render as HTML files.

• XML provides developers with more customization
options and access to more tools than HTML.

• XML seamlessly integrates with multiple applications,
making XML a standard type for data definition docu-
ments.

Limitations of using XML
in wireless application development

XML documents can be large, which reduces its value for
sending data to users’ wireless devices. An optimal solution
involves sending rich data using the quickest and most cost
efficient method possible. Wireless binary XML is one solu-
tion that helps to reduce the file size and save organizations
transmission time and costs.

Understanding WBXML

WBXML provides a way to send documents quickly and
more cost effectively while maintaining the advantages of
using XML. WBXML is a compact representation of XML
and is part of the presentation logic in Wireless Application
Protocol (WAP). WBXML significantly improves the effi-
ciency of transmitting XML over narrow bandwidth net-
works where data size is of paramount importance.
Most of the WBXML format is not human readable; it con-
tains bytes or octets in raw (non-textual or non-encoded) and
hexadecimal form. Two hexadecimal numbers represent 1
byte.

Advantages of using WBXML
to send data wirelessly

Using WBXML for sending data wirelessly offers the fol-
lowing advantages:

• Because the tags in WBXML are represented as a binary
value, you can save transmission time when sending the
document to a wireless device.

• Binary XML documents are considerably smaller than
XML documents. This reduces the amount of airtime it
takes to send a WBXML document wirelessly, which
may result in a lower cost to transmit it.

• Binary XML parsing is about half the size of an XML
parsing. The BlackBerry MDS Services creates a
WBXML document by taking an XML document and
creating two additional corresponding files: a binary
XML file and a codebook.

Binary form Hexadecimal form

0100 1000 0x48

1100 1110 0111 1101 0xCE 0x7D

Volume 3, Issue 1 34 BlackBerry Developer Journal

Note: Refer to the BlackBerry MDS Services log that is
included with this article for an example of a codebook.

About codebooks

The codebook is used after the BlackBerry device receives
the binary XML document. A codebook holds the table
value for the binary tags. It is usually stored on the device
since it is lightweight and the values are matched once the
binary document is received. A codebook contains the fol-
lowing three types of tables:

Codebook creation

Certain conditions must be met before the BlackBerry MDS
Services can successfully create a codebook from an existing
XML document.

• The XML document needs an external DTD/XSD docu-
ment because the codebook is generated from the
DTD/XSD and the binary XML file is generated from
the XML itself.

• The address for the XML document must be referred to
in URL format.

• The address in the XML document pointing to the
DTD/XSD must be in URL format, not as a local file
path.

For example, use: http://localhost:8000/content/text.dtd

… instead of c:/sample/text.dtd

Note: The codebook is returned from the BlackBerry MDS
Services in a 64-bit string type. You must put that string in a
64bit array before you can manipulate it.

Codebook storage

There are two options for storing the codebook. It can either
be persistently stored on the device, or it can be created each
time the application is invoked by the user. Do not use the
second scenario unless the memory on the device is close to
being full. Creating a redundant codebook and sending it
every time breaks down the function of WBXML, since the
amount of airtime used is not significantly lowered.

The net.rim.device.api.xml.jaxp API

The net.rim.device.api.xml.jaxp is a new API found in the
BlackBerry Java Development Environment (JDE) v4.0. The
classes found in this API are described in the following
table.

Development steps for using WBXML

The following steps guide you through the process of creat-
ing an application that can be parsed using WBXML. Refer
to the code sample on the BlackBerry Developer Journal site
for clarification as you move through the steps.

Codebook table type Description

Tag table Defines the element values

Start table Defines the name of the attributes

Value table Defines the value of the attribute

Class Description

DomInternalRepresentation Represents an XML
document and is used to
implement the W3C
DOM

SAXParserImpl Using the specified
default handler uses this
class to parse the content
of a given Input Stream
instance as XML

WBXMLCodeBookCreation
Handler

Extends the default
handler and deals with
the content of a
codebook after it is
created

WBXMLParser Handles all WBXML
documents and their
attributes

WBXMLWriter Extends the default
handler and implements
an XML writer as a SAX
parser handler. The main
purpose of this class is to
handle the WBXML
document once it has
been parsed

XMLParser Handles all XML
documents that need to
be parsed and their
attributes

XMLWriter Same as WBXMLWriter
but handles XML
documents

Volume 3, Issue 1 35 BlackBerry Developer Journal

Step 1: Make sure that the
XML file is up to code and fully valid

This step includes verifying that the corresponding
DTD/XSD files are created correctly and that the code in the
XML file is also correct. There are multiple third-party soft-
ware products available that can build a DTD on its own
after the XML is validated. The XML and its corresponding
DTD/XSD must be stored on a web server. The BlackBerry
MDS Services needs a URL to find the WBXML file. The
address in the XML that points to the DTD/XSD must be a
URL in order for the BlackBerry MDS Services to find the
codebook.

Note: If you get a SAX parser exception, make sure the XML
document is valid.

Step 2: Build object classes

These classes include all object references that are found in
the XML document. In the sample, there is only one object
called Contact. Building object classes makes it easier to
control the data that is shown on the BlackBerry device and
makes it easier to add and subtract data types. A well-formed
XML document contains, at most, one or two major object
types and multiple attributes and minor objects within them.
For example, in the sample, there is one object type with
multiple attributes in it.

These object classes make the rest of the development easier
and less confusing.

Step 3: Handle the parsed file

The default handler dictates what to do with the data after it
is parsed and provides a place where the SAX parser can
store the parsed data. The default handler is a public class,
but it responds like an interface because most of its impor-
tant functions return null values. You must construct a class
that extends the default handler. You can use one of the given
classes, like WBXMLWriter, but it has limitations. It does
not have enough functions to produce correct output or to
correctly handle the parsed data for the sample application.
The default handler class can be developed in multiple ways,
but the two main functions are startElement() and endEle-
ment(). Their default value is to return null but this is where
the finding of the data can be done. The function startEle-
ment() does something at the start of a tag or element; the
endElement() function does something at the end of a tag.

In the sample, at the start of each of the elements, you set the
type of data so that you know which data to get and then
store under the appropriate setting in the object class. The
method characters() returns the data value of an element,
including its white space and empty characters. It is impor-
tant to use the trim method so that white space and empty
characters are not collected and displayed. In the sample, the
data was extracted and displayed, leaving the class small in
size.

Note: The default handler has more functionality than used
in the sample. See the BlackBerry API v4.0 for more
information.

Step 4: Persistent storage of the codebook

In most cases, the persistent classes are small and easy to
create. Some developers include persistent classes in their
main Java application class, but it is usually easier to create
them as an external class. Because most applications involve
persistent classes, not much detail is included here. The sam-
ple includes an object of a persistent object, which holds the
same attributes as a codebook. Because codebooks are not
persistent objects, they cannot be stored directly on the
device, but must be instantiated as a persistent object. In
most cases, this exact persistent class can be used in your
development. Even with modifications, a persistent class is
relatively simple to create.

Step 5: Develop the application

The main class

Now that you have taken care of the entire external element
surrounding the development for WBXML, you are ready to
develop the core Java application. This part of the develop-
ment is similar to developing other applications, so only
problematic issues are discussed.

Looking at the attached code, initially you can see all the
member variables being defined, the main function is start-
ing the application, and the constructor is setting the title,
creating a screen and pushing it and instantiating the connec-
tion thread. This activity is all being done in the main class.

Note: Looking at the code, you can see that
UiApplication.getUiApplication().invokeAndWait(new
Runnable()) was used multiple times. Only one thread at a
time can gain access to an interface component. If you are
getting a UI exception check whether you are invoking any
screen variables without using this function.

Converting 64-bit codebook to string

The function getCodeBookFromString takes a 64-bit string
containing the codebook. Using the WBXML parser, it cre-
ates a codebook handler. This function can be reused in mul-
tiple applications that require a codebook. It was created as a
standard function because the BlackBerry MDS Services
will always have 64-bit string value of the codebook. It is

Object Element Example

Name First name
Last name

John
Doe

Phone number Area code
Remaining digits of
phone number

414
555-1234

Volume 3, Issue 1 36 BlackBerry Developer Journal

easier to create a codebook handler than the codebook itself;
the string is parsed using the WBXML parser. Remember
that the WBXML parser takes an input stream containing a
WBXML document and parses it to a default handler. In this
case, the default handler is the codebook handler, so now
you can use the codebook to parse data.

Adding contacts

The addContact function is customized for each parsing
application. This function takes the object type Contact and
outputs its relevant data. This function works in collabora-
tion with the contact class. The contacts are being fetched
from a vector array, which were stored in it by the default
handler class Parser.

Creating a separate thread

The thread class makes the request to the BlackBerry MDS
Services for the conversion of XML into WBXML and its
corresponding codebook through an HTTP header request. If
this is the first time the device is receiving the codebook, you
can store it using persistent store. If the codebook already
exists, you can reuse the stored codebookas shown in the IF
and ELSE statement found in this class.

If the codebook does not exist, make the X-RIM-UseCode-
Book true and embed. If the codebook exists, make it true.
There is no check to see if the codebook is up to date, this is
just a sample, that much detail is not necessary at this point.

From the CodebookHandler, retrieve the tables that are
needed for SAX parser, parse the matching XML with the
codebook, and retrieve the data. The other HTTP headers are
setting the transcoded content to be XML, for the given doc-
ument, the BlackBerry MDS Services creates its WBXML

and codebook. The other header is telling the BlackBerry
MDS Services to accept the type of WBXML and the code-
book documents. The last step involves doing the necessary
functions to the data or displaying it.

Note: You must use all of the HTTP headers for the WBXML
parsing to work. You can have more than the requirement
header, but these headers are the minimum requirement.

Summary

There are two major constraints to sending data wirelessly:
the time to render the document and the cost of sending it.
With WBXML parsing, you can help minimize these two
constraints while still transmitting all of the necessary data.
Mobile workers can access critical data at a more cost-effec-
tive and faster rate than by using XML documents.

WBXML development does not have to be more difficult
than XML or HTML development. Developers with skills in
application development can quickly learn how to use
WBXML to send data across wireless networks.

You can download the sample from the Developer Journal
site to use as a guide in development, and can also enhance it
when creating your own custom application.

Visit http://www.blackberry.com/developers for more infor-
mation about application development for BlackBerry. See
the APIs for the BlackBerry JDE v4.0 for more information
on additional functions that were not used or discussed for
this sample but that might be helpful as you develop your
own applications.

Please email your comments, suggestions and editorial submissions to Editor@BlackBerryDeveloperJournal.com

Volume 3, Issue 1 37 BlackBerry Developer Journal

Object Grouping
Mike Kirkup, Research In Motion

One of the most common memory related errors encountered
by application developers is an exhaustion of object handles.

There are two types of object handles defined in the Java op-
erating system for BlackBerry today:

• Transitive
• Persistent
Transitive object handles, more commonly referred to sim-
ply as “object handles”, are consumed for each object in the
system.

Persistent object handles, on the other hand, are consumed
only when an object is persisted. That is, a persisted object
consumes both a transitive and persistent object handle.

There are a fixed number of object handles in the system
where the number of persistent object handles is roughly half
the number of transitive object handles. For developers, it is
important to conserve object handles as much as possible es-
pecially when persisting objects to the limited number. De-
pending on the data structure selection it does not take too
many stored records to exhaust the number of object han-
dles.

Consider a record that contains 10 String fields representing
such items as name, phone number, address, etc. This record
will consume 11 persistent object handles - one for the
record object and one for each string. If 3000 records are
persisted, 33,000 persistent object handles will be consumed,
which exceeds the current number of persistent object han-
dles on a 16MB device.

An API has been exposed in the BlackBerry JDE v4.0 to
provide the capability of Object Grouping. Using the
net.rim.device.api.system.ObjectGroup class, a developer
can consolidate the object handles for an object into one
group. Using the example above, if you group the record you
will only use one object handle for the record instead of 11.
The object handles for the String fields will be consolidated
under the record object handle.

However, there are two downsides to the use of the Object-
Group API.

1. When an object is grouped it is considered read-only.
This does not mean that the object cannot be changed,
but rather that you need to ungroup the object before

making any changes. Once the changes are complete,
regroup the object using the normal group method. If
you attempt to modify a grouped object without
ungrouping it first, an ObjectGroupReadOnlyException
will be thrown.

2. There is a performance penalty applied when an object
is ungrouped. The system will create a copy of the
grouped object and allocate handles to each of the
objects inside that group. Therefore, ungrouping of
objects should only be done when necessary. For the
curious at heart, this explains why many applications on
the BlackBerry have a separate View and Edit menu
item. The View menu item does not ungroup the entry
while the Edit menu item does ungroup the item.

The sample code associated with this article showcases how
an application can take advantage of object grouping for
their data storage on the device with the common address
book implementation. The sample code also shows how easy
it can be to attempt to modify a grouped object which the
system will not allow.

Class:
net.rim.device.api.system.ObjectGroup

An ObjectGroup represents a collection of objects contained
within the same filesystem record. A reference to any mem-
ber of the group from outside of the group will prevent the
entire group from being garbage collected. ObjectGroup is a
signed class.

ObjectGroup.createGroup()

Description:

• Recursively groups an object, and everything it
references to, into one orphan filesystem record.
References between objects in a group are rewritten as
relative references which do not consume an object
handle. This version will record in the event log if a
grouping failed.

Syntax:

• void createGroup(Object obj)

Parameters:

• The object to group

Returns:

• Nothing

Flash
Memory

Persistent
Object
Handles

Object
Handles

8 MB 12,000 24,000

16 MB 27,000 56,000

32 MB 65,000 132,000

Volume 3, Issue 1 38 BlackBerry Developer Journal

Throws:

• ObjectGroupTooBigException if there are too many
object to fit in 64k

• ObjectGroupReadOnlyException if any attempt is made
to modify an object in a group.

ObjectGroup.createGroupIgnoreTooBig()

Description:

• Recursively groups an object, and everything it
references to, into one orphan filesystem record.
References between objects in a group are rewritten as
relative references which do not consume an object
handle. This version will record in the event log if a
grouping failed.

Syntax:

• void createGroupIgnoreTooBig(Object obj)

Parameters:

• The object to group

Returns:

• Nothing

Throws:

• ObjectGroupReadOnlyException if any attempt is made
to modify an object in a group.

ObjectGroup.expandGroup()

Description:

• Return a new object which is a read-write clone of an
object group

Syntax:

• Object expandGroup(Object obj)

Parameters:

• The object to ungroup

Returns:

• A read-write clone of an object group

Throws:

• Nothing

ObjectGroup.isInGroup()

Description:

• Test if object is grouped

Syntax:

• boolean isInGroup(Object obj)

Parameters:

• The object of the group

Returns:

• True is object is grouped else returns False

Throws:

• Nothing
——

Sample Source Code
——
/*
* ObjectGroupingDemoApplication.java
*
* © Research In Motion Limited, 2003-2005
*/

package com.rim.samples.device.objectgroupingdemo;

import net.rim.device.api.system.*;
import net.rim.device.api.ui.*;

/**
 * The application class contains the starting point
 * for this demo and shows how grouping and ungrouping
 * should work. As well, it shows how an exception is
 * thrown if the object is grouped and the application
 * attempts to modify it.
 */
public class ObjectGroupingDemoApplication extends Application
{
public static void main(String[] args)
{
AddressBook addressBook = AddressBook.getInstance();

Volume 3, Issue 1 39 BlackBerry Developer Journal

// Create some sample address book entries.
AddressBookRecord record1 = new AddressBookRecord("Mr.", "Tony", "Hawk");
AddressBookRecord record2 = new AddressBookRecord();
record2.setTitle("Mrs.");
record2.setFirstName("Greta");
record2.setLastName("Shaw");

addressBook.add(record1);
addressBook.add(record2);

addressBook.remove(record2);
addressBook.update(record1, record2);

// Ensure that the size of the address book is correct.
if(addressBook.size() != 1) {
throw new RuntimeException(); // We should only have one record left.

}

// Now, try to update a record entry from the address book directly without ungrouping.
AddressBookRecord myRecord = addressBook.getRecord(0);

// Show that myRecord is currently in a group.
boolean isGrouped = ObjectGroup.isInGroup(myRecord);
System.out.println("Object is grouped? " + isGrouped);

// Try to update the record and catch the resulting exception.
// Note that this is a runtime exception so we need to explicitly catch it.
try {
myRecord.setFirstName("Elizabeth");

} catch(ObjectGroupReadOnlyException e) {
System.out.println("ObjectGroupReadOnlyException caught as expected: " + e);

}

// Clear up the address book to remove remaining entries.
addressBook.remove(myRecord);

}
}
——
/*
 * AddressBookRecord.java
*
* © Research In Motion Limited, 2003-2005
*/

package com.rim.samples.device.objectgroupingdemo;

import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

/**
 * This class represents the record object for the address book
 * record sample code. It is a persistent object and is intended
 * to showcase how grouping would be applied to this object.
 */
public class AddressBookRecord implements Persistable
{
private String _title; // The title of the address book record.
private String _firstName; // The first name of the address book record.
private String _lastName; // The last name of the address book record.

/**
 * Create an empty version of the AddressBookRecord.
 */

Volume 3, Issue 1 40 BlackBerry Developer Journal

public AddressBookRecord()
{
_title = "";
_firstName = "";
_lastName = "";

}

/**
 * Create a new AddressBookRecord with the specified title, first name and last name.
 * @param title the title of the AddressBookRecord. It cannot be null.
 * @param firstName the first name of the AddressBookRecord. It cannot be null.
 * @param lastName the last name of the AddressBookRecord. It cannot be null.
 * @throws IllegalArgumentException if any of the parameters are null.
 */
public AddressBookRecord(String title, String firstName, String lastName)
{
if(title == null || firstName == null || lastName == null) {
throw new IllegalArgumentException();

}
_title = title;
_firstName = firstName;
_lastName = lastName;

}

/**
* Returns the title of the AddressBookRecord.
* @return the titel of the AddressBookRecord.
*/
public String getTitle()
{
return _title;

}

/**
 * Returns the first name of the AddressBookRecord.
 * @return the first name of the AddressBookRecord.
 */
public String getFirstName()
{
return _firstName;

}

/**
 * Returns the last name of the AddressBookRecord.
 * @return returns the last name of the AddressBookRecord.
 */
public String getLastName()
{
return _lastName;

}

/**
 * Sets the title of the AddressBookRecord.
 * @param title the new title of the AddressBookRecord.
 */
public void setTitle(String title)
{
_title = title;

}

/**
 * Sets the first name of the AddressBookRecord.
 * @param firstName the new first name of the AddressBookRecord.
 */
public void setFirstName(String firstName)

Volume 3, Issue 1 41 BlackBerry Developer Journal

{
_firstName = firstName;

}

/**
 * Sets the last name of the AddressBookRecord.
 * @param lastName the new last name of the AddressBookRecord.
 */
public void setLastName(String lastName)
{
_lastName = lastName;

}

// Javadocs copied from super class.
public boolean equals(Object obj)
{
if(obj == this) return true;
if(obj instanceof AddressBookRecord) {
AddressBookRecord other = (AddressBookRecord)obj;
if(!other._title.equals(_title)) return false;
if(!other._firstName.equals(_firstName)) return false;
if(!other._lastName.equals(_lastName)) return false;
return true;

}
return false;

}
}
——
/*
* AddressBook.java
*
* © Research In Motion Limited, 2003-2005
*/

package com.rim.samples.device.objectgroupingdemo;

import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

/**
 * This class represents the AddressBook implementation
 * where one can add, remove, update and traverse the
 * different address book records stored in the address
 * book.
 */
public class AddressBook
{
// com.rim.samples.device.objectgroupingdemo.AddressBook.PERSIST
private static final long PERSIST = 0xcf76f65979a526eaL;
// com.rim.samples.device.objectgroupingdemo.AddressBook.ADDRESS_BOOK
private static final long ADDRESS_BOOK = 0xdc33b15c18be898fL;

// Reference to the PersistentObject for our address book.
private PersistentObject _persist;
// The array of address book records that make up the address book.
private AddressBookRecord[] _records;

/**
 * Simple constructor for the class that will initialize the
 * _records array using the data stored in the persistent object.
 * This method is marked private because no other class should be
 * able to instantiate the AddressBook.
 */
private AddressBook()

Volume 3, Issue 1 42 BlackBerry Developer Journal

{
_persist = PersistentStore.getPersistentObject(PERSIST);
_records = (AddressBookRecord[])_persist.getContents();
if(_records == null) {
_records = new AddressBookRecord[0];
_persist.setContents(_records);

}
}

/**
 * Returns the singleton instance of the AddressBook.
 * @return the singleton instance of the AddressBook.
 */
public static AddressBook getInstance()
{
RuntimeStore rs = RuntimeStore.getRuntimeStore();
AddressBook addressBook = (AddressBook)rs.get(ADDRESS_BOOK);
if(addressBook == null) {
addressBook = new AddressBook();
rs.put(ADDRESS_BOOK, addressBook);

}
return addressBook;

}

/**
 * Adds the address book record.
 * @param record the address book record to add.
 * Note: This method does not perform any duplicate detection.
 */
public void add(AddressBookRecord record)
{
if(record == null) {
throw new IllegalArgumentException();

}

// Be sure to group the record before adding it to the address book.
ObjectGroup.createGroup(record);
Arrays.add(_records, record);
_persist.commit();

}

/**
 * Updates the oldRecord in the address book with the contents specified
 * in the newRecord.
 * @param oldRecord the record to update in the address book.
 * @param newRecord the record to use for the data to update the oldRecord.
 */
public void update(AddressBookRecord oldRecord, AddressBookRecord newRecord)
{
if(oldRecord == null || newRecord == null) {
throw new IllegalArgumentException();

}

// The obvious implementation for updating an address book record is
// to remove the oldRecord and add the new record. The following two
// lines would accomplish this task.
//
// Arrays.remove(_records, oldRecord);
// Arrays.add(_records, newRecord);
//
// However, this is both inefficient (traverse the array, resize the array twice, etc)
// and doesn't help demonstrate grouping and ungrouping. So, in this implementation
// we will simply modify the title, first name and last name in the specific
// old record with the data from the new record.

Volume 3, Issue 1 43 BlackBerry Developer Journal

// Ensure that the oldRecord is actually contained in our address book.
int index = Arrays.getIndex(_records, oldRecord);
if(index == -1) {
// Item not found.
throw new IllegalArgumentException();

}

// Ungroup the old record.
AddressBookRecord ungroupedRecord = (AddressBookRecord)ObjectGroup.expandGroup(_records[index]);

ungroupedRecord.setTitle(newRecord.getTitle());
ungroupedRecord.setFirstName(newRecord.getFirstName());
ungroupedRecord.setLastName(newRecord.getLastName());

ObjectGroup.createGroup(ungroupedRecord);
_records[index] = ungroupedRecord;
_persist.commit();

}

/**
 * Removes the address book reecord from the address book.
 * @param record the record to remove.
 */
public void remove(AddressBookRecord record)
{
if(record == null) {
throw new IllegalArgumentException();

}
Arrays.remove(_records, record);
_persist.commit();

}

/**
 * Returns the address book record specified by the index.
 * @param index the index into the list of address book
 * records.
 * @return the address book record specified by the index if
 * that corresponds to a valid index.
 * @throws IllegalArgumentException if the index is invalid.
 */
public AddressBookRecord getRecord(int index)
{
if(index < 0 || index >= _records.length) {
throw new IllegalArgumentException();

}
return _records[index];

}

/**
 * Returns the size of the address book.
 * @return the number of records currently stored
 * in the address book.
 */
public int size()
{
return _records.length;

}
}

Volume 3, Issue 1 44 BlackBerry Developer Journal

The Object versus Service dilemma:
Making room for OO in Web Services

Marco Adragna, Research In Motion

Can we look at a Web
Service as if it is an Object?

I asked a similar question in a W3C forum. The 30+ replies I
received from W3C members gave me the measure of how
hot the Object versus Services topic is. My question pointed
at Grid Services as an example of object-oriented concepts
used in a web service environment. Is such a practice wrong?

A Grid Service is “a Web Service that conforms to a set of
conventions (interface and behaviour)” [1]. Grid Service ex-
perts have been working with W3C toward the inclusion of
interface (exportType) inheritance in Web Service Descrip-
tion Language (WSDL). This feature was present in the WS-
DL 1.2 working draft of the 11 June 2003 release and has
been added to WSDL 2.0. The focus has subsequently shift-
ed to the possibility of including Service Data Elements in
WSDL. Service Data Elements can be compared to attributes
of an object-oriented interface, described in an Interface
Definition Language. Such data describes externally observ-
able behaviour, such as the terminationTime of a Grid Ser-
vice instance. The notions of stateful resources and limited
lifetime mark the difference between Grid Services and “tra-
ditional” Web Services.

The need for a limited lifetime is only natural when we make
a comparision with objects. Resources of any provider are
bounded. We can’t create an infinite number of instances
with an eternal lifetime, so we either provide a method to de-
stroy an object or we give it a limited lifetime.

Over the last few decades, a great wealth of knowledge has
been accumulated on object-oriented design. This knowl-
edge is partly condensed in the form of Design Patterns and
is widely available for businesses both as mature software
development environments and as skilled OO software de-
velopers. It could be argued that Web Service aims at being
more solid than traditional distributed object architectures.
On the other hand, with decades of object orientation behind
us, it is only natural to ask how a relatively new technology
such as Web Services relates to OO. The rise of Grid Servic-
es have made such questions more urgent, but the Ob-
ject-Service dilemma existed even before them.

The Wizard promise:
Click here to publish your class as a Web Service.

If we look at commonly available software development en-
vironments, we see that is possible to create a Web Service
by specifying which class or which methods are to be avail-
able as a "XML Web Service". In a typical Enterprise Java-
Beans (EJB) 2.1 implementation, a stateless session bean can

be published as a Web Service through its container. Using
the Java Web Server (JWS) facility of Apache Simple Object
Access Protocol (SOAP) processor Axis, all public methods
of a Java class can be published as web services. In Mi-
crosoft .Net environment, the attribute WebMethod produces
similar results. Given a development environment and a
class to publish, a WSDL document can be automatically
produced and the service can be requested by anyone who
knows and has the privileges to access the related Uniform
Resource Identifiers (URI). Cross-platform distributed ob-
ject architectures have became a reality. Or not?

The Harsh Truth:
Interoperable Web Services neither

talk about objects nor can think about them.

Following an object-oriented approach, we want to provide
requesters of the Diary Web Service with a getCurrentDay()
method. This method is intended to return a remote ob-
ject-reference to an object of the class Day. This object rep-
resents the current day in my Diary and encapsulates all
information about my appointments. Using the remote refer-
ence, the requester can invoke methods of this object. It all
seems to work, but if the requester is on a different platform
(e.g. provider on .NET and requester on Tomcat/Axis) it is
likely to break down. Web services do not offer a standard
mechanism for handling remote object-reference. A custom
solution could be found, but this would create the very sort
of tight coupling that Web Services are meant to avoid.

We have seen that passing an object by reference is not a
good idea. Maybe we can pass it by value? Microsoft .Net
Framework ver.1 allows Web Services to pass objects by val-
ue. Objects are serialized in XML using the XMLSerializer
class. In reality, only the public state of objects gets serial-
ized. This XML serialization does not convert methods or
private properties. There is no guarantee that an object seri-
alized on the server will get deserialized into an object of the
same type on the client. In general, SOAP can transport
XML-serialized objects, but there’s no guarantee that the re-
ceiver will be able to deserialize them correctly.

Someone might say, “Who needs those objects anyway,
we’ll do it all with Web Services”, “Web services are de-
signed to be coarser grained than objects” and “Web services
are layered on top of an object oriented system”. Yes, but can
they express the Classifier/Instance relationship that exist
between a class and its objects? Can Web Services “think”
about objects?

Volume 3, Issue 1 45 BlackBerry Developer Journal

———
What objects are really about.

“Software engineering is the application of scientific principles to (1) the orderly transformation of a problem into a working
software solution and (2) the subsequent maintenance of that software until the end of its useful life'' [2]. A Software Engineer
is called when there is a generically problematic situation that might be solved by computing means. The first step is to analyse
the problem, gaining knowledge of the problem and its domain. The second step is to describe the external behaviour of the
software/hardware system that might solve the problem. Successive iterations bring further refinement. Partitioning and
Abstraction are two of the very few principles used in the process of structuring Problem Analysis and Behavioural
Requirements. If the process of turning a problem analysis into a working software solution is to be simple, then the software
technology used to implement the solution needs to fully support the primitives of problem analysis. Partitioning express the
‘aggregation/part’ structural relationship, whilst abstraction captures the concept of 'general/specific' or 'example of' or
'instance of'. Where are such concepts in Web Services? Composition languages (e.g. WS-BPEL) allow the creation of a new
Web Service from existing ones. This process defines an aggregation/part relationship between the new composition and single
web services that compose it. The next step could be fully supporting Abstraction and the concept of "Instance Of".
———

Conclusion

Can we look at a Web Service as if it was an Object? In the
last two years, the standardization effort of international or-
ganisations such as W3C, OASIS and Globus has brought
those two worlds much closer. Specifications such as
WS-Notification and features like WSDL interface inherit-
ance bring OO concepts to the Web Service World. This
trend is likely to continue. In the meantime, cross-platform
interoperability is still a challenge and the object-service di-
lemma remains to be solved.

References

1. S.Tuecke (ANL), K. Czajkowski (USC/ISI), I Foster
(ANL), J. Frey (IBM), S. Graham (IBM), C. Kesselman
(USC/ISI), T. Maquire (IBM), T. Sandholm (ANL), D.
Snelling (Fujitsu Labs), P. Vanderbilt (NASA) – 27th
June 2003 - Open Grid Services Infrastructure (OGSI) -
Version 1.0

During 2004 and 2005 the WS-Resource Framework
has refactored interfaces and concepts of the OGSI V1.0
specification in a manner that exploits recent
developments in Web services architecture.

2. A. M. Davis – 1993
Software Requirements, Objects, Functions and States
Prentice Hall

3. W3C, GLOBUS and OASIS web service related
specifications

Volume 3, Issue 1 46 BlackBerry Developer Journal

Would you like some testing with that?

Emad Shihab, Research In Motion

Although developers and testers work closely together, many
software developers do not have a clear understanding of
what testers do. This article will detail some of the common
issues facing developers and testers in the industry.

Software testing
Software testing has become a crucial part of the software
development cycle, and a lot of the important groundwork
for testing is provided by the development teams. The quali-
ty of the testing performed depends on the information com-
municated to the testers by the developers regarding the
functionality of the software.

The majority of test suites generated by testers are based on
feature specification documents provided to them to soft-
ware development teams provide. The creation of test suites
can be easy if all the feature information is thorough and ac-
curate. Of course it is the tester’s job to run these test suites,
but as a tester, I enjoy running a complete and accurate test
suite far more than an incomplete or inaccurate test suite.

How are test suites created?
The all-important first step is to create feature specification
documents for the different features. Without those, you
might as well go to the beach.

A tester then examines the specifications and creates the nec-
essary test suites based on the type of the feature. The feature
can be broken down into different categories (GUI, low level
functionality, etc.)

The generated test suites are then verified by a group of two
or three other testers. After implementing any changes to the
test suite suggested by the verification group, the test suite is
finalized and ready to be used.

Why are so many logged bugs not true errors?
The main cause of this problem is that software changes rap-
idly and many testers do not have the time to update their test
suites. This causes inconsistencies when new features are
tested and causes ‘false’ bugs to be logged.

In addition, testing environments play a big role, especially
when testing wireless applications, which is the case for
most BlackBerry testers. Radio frequency noise and carrier
outages are examples of “real world” factors that can affect
wireless applications. Testers must take these factors into ac-
count when testing wireless applications.

This bug does not seem to be
fixed although the developer says it is?

As a tester I cannot speak for developers, but I can convey
my side of the story. The main reason that I send back bugs
as ‘not fixed’ is because the developers have verified the is-
sue in a way that is inaccessible or unknown by a tester. This
means that when the developers verified issue ‘X’, they
looked at some logs that an average tester cannot read or un-
derstand. How well testers verify bugs is very much depen-
dent on the developers. A brief description of how the
developer tested the fix would help the tester greatly. Even a
brief description of the steps undertaken by the developer
would assure the tester that the rights steps are being fol-
lowed. This would result in saving valuable time for both
parties, rather than sending issues back and forth.

I cannot stress how important the developer’s role is when it
comes to testing software. Having effective communication
between the software testing and development teams can
sometimes make the difference between a reliable and
on-time product or a product that is late and suffers from
quality issues.

Volume 3, Issue 1 47 BlackBerry Developer Journal

API Spotlight: BlackBerry does GPS
Richard Evers, Editor

My family took a trip to California last year. During our re-
turn journey from Napa Valley, we lost our way and ended
up in a cemetery in a very lonely section of California.

I powered up my personal GPS, hung it out of the window
for an eternity to sync with the satellites, got a street level
map of the region, and used it to find the highway heading
back to San Francisco.

Without question, my GPS is one of the best investments
I’ve ever made. With GPS in hand, the fear of getting lost
while traveling is largely a thing of the past.

The GPS-enabled BlackBerry 7520 Wireless Handheld™
implementation includes traditional Autonomous mode (di-
rect sync with satellites), Assisted mode, and Cellsite mode.
Each mode has strengths and weaknesses that will be dis-
cussed in this article.

How it Works

Autonomous GPS works by syncing with four or more satel-
lites to determine latitude, longitude and altitude.

Latitude is the angular distance north or south of the equator
measured by lines circling the earth parallel to the equator
measured from 0 degrees to 90 degrees.

Longitude is the angular distance east or west of the prime
meridian (Greenwich Meridian) as measured by lines per-
pendicular to the parallels and converging at the poles 0 de-
grees to 180 degrees. Greenwich Meridian runs through “the
primary transit” instrument (the main telescope) at the Royal
Observatory in Greenwich, England.

Altitude is the current elevation above sea level.

GPS accuracy can be improved through use of the Wide Ar-
ea Augmentation System (WAAS). WAAS is a Satel-
lite-Based Augmentation System (SBAS) that calculates the
errors in the GPS signal at several monitoring stations, and
then transmits error correction messages from geostationary
satellites to GPS receivers.

Statement from the FAA

WAAS is based on a network of approximately 25 ground ref-
erence stations that covers a very large service area. Signals
from GPS satellites are received by wide area ground refer-
ence stations (WRSs). Each of these precisely surveyed refer-
ence stations receive GPS signals and determine if any
errors exist. These WRSs are linked to form the U.S. WAAS
network. Each WRS in the network relays the data to the
wide area master station (WMS) where correction informa-

tion is computed. The WMS calculates correction algorithms
and assesses the integrity of the system. A correction mes-
sage is prepared and uplinked to a geosynchronous satellite
via a ground uplink system (GUS). The message is then
broadcast from the satellite on the same frequency as GPS
(L1, 1575.42MHz) to receivers on board aircraft (or
hand-held receivers) which are within the broadcast cover-
age area of the WAAS. These communications satellites also
act as additional navigation satellites for the aircraft, thus,
providing additional navigation signals for position determi-
nation.

The WAAS will improve basic GPS accuracy to approximate-
ly 7 meters vertically and horizontally, improve system avail-
ability through the use of geostationary communication
satellites (GEOs) carrying navigation payloads, and to pro-
vide important integrity information about the entire GPS
constellation.

In practice, WAAS correction can improve accuracy to less
than 7 meters in most commercial GPS units. GPS accuracy
is better at night when the ionospheric errors have decreased.
Accuracy of 1.8 meters has been documented in WAAS-ca-
pable devices at night.

The easiest way to understand how GPS works is to initially
determine positioning from a two-dimensional perspective.

For example, four amazing birds (Raven, Robin, Jay and
Martin) are gathered together in a park. Raven is lost and
asks the other birds for help. Robin tells Raven that he’s 15
km away from Lancaster, PA (as the bird flies). Jay tells
Raven that he’s 7 km away from Leola, PA, and Martin tells
Raven that he’s 8 km away from Strasburg, PA.

Raven whips out his trusty map and geometry compass, and
(carefully using his wings as if they were hands) draws a cir-
cle around Lancaster with a scaled down radius of 15 km,
draws a circle around Leola with a scaled down radius of 7
km, and draws a final circle around Strasburg with a scaled
down radius of 8 km. The intersection of the three circles
shows that Raven is perched in a park in Bird in Hand, PA.

To bring this into the realm of GPS, you would need three
reference points represented by spheres where each point
would be the distance from the caller to the satellite. Earth
would act as the final sphere for this example. The final
earthbound intersection point of the spheres would provide
the latitude, longitude and altitude. Additionally, directional
movement and speed could be mathematically determined
after each refresh cycle.

Volume 3, Issue 1 48 BlackBerry Developer Journal

Two things must be known before calculating GPS values:

1. The location of each of the satellites

2. The distance between the GPS unit and each of four or
more satellites

The GPS clock, which is separate from the BlackBerry hand-
held clock, must also be regularly synced to the atomic
clocks on the satellites before trying to determine distance.
Constant syncing with atomic clocks is a standard feature of
all GPS units.

There are 24 active GPS satellites in high orbit at all times in
predictable locations with 3 backup satellites. Satellites are
solar powered, 17 feet across when the solar panels are ex-
tended, weigh roughly 2,000 pounds, transmit up to about 50
watts, and are built to remain in use for 10 years. New satel-
lites are constantly being built and launched by the U.S. De-
partment of Defense to ensure that the network remains
viable at all times.

Satellite location is initially determined by receiving the sat-
ellite identifier and then performing a lookup in a local GPS
positioning almanac to determine where the satellite should
be orbiting at that moment in time. The U.S. Department of
Defense closely monitors the position of each satellite and
reprograms the satellites to transmit location adjustments to
all GPS units on a regular basis, and also repositions the sat-
ellites from time to time to return to normal orbit.

The distance between the GPS unit and a satellite is deter-
mined through use of a pseudo-random pattern. This pattern
is generated and transmitted by the satellite at the same time
as the GPS unit generates the same pattern. The satellite’s
pattern will start to be received later than the initial time of
generation, which means that the GPS unit can determine
how far away the satellite is by multiplying the length of de-
lay by the speed of light. This is why it is critical to sync to
the atomic clock, and why some calculation errors still occur
because the GPS clock will never be in perfect sync with the
atomic clocks. Other factors come into play to further de-
grade the calculation such as signal obstructions on earth and
in the atmosphere.

With location and distance known, a calculation can be made
to determine where the four spheres intersect. It’s possible
for three spheres to intersect even if the underlying values
are wrong, but four spheres cannot intersect unless the calcu-
lations are accurate. Longitude and latitude can be deter-
mined with three satellites, but the fourth satellite is needed
to determine altitude and reduce errors. Distance calcula-
tions are made in real time using the clock settings of the
GPS unit, therefore all calculations will be proportionately
incorrect and close enough to intersect the four spheres.

Once the GPS unit has fully synced with the satellites to de-
termine position, it’s easy to determine direction, actual and
average speed, trip duration and length, estimated time of ar-
rival, and traveled path by comparing and accumulating dif-
ferences between sampling periods.

The greatest strengths of autonomous GPS is that it is accu-
rate, free to use, and performs rapid updates after being fully
synced with four satellites.

The greatest weaknesses are:

• It can take several minutes to fully sync with four or
more satellites the first time it is powered up in a new
area

• Power consumption can be fairly heavy for a wireless
device depending on the sampling ratio. It’s often
recommended to use a car charger when using a GPS
unit for driving directions.

• Connectivity is often hard to maintain because satellite
signal strength of 50 watts from a distance of 12 miles is
so weak that GPS units tend to lose connection when
indoors, and when traveling through or around physical
obstructions. The radio signal (1575.42 MHz in the
UHF band for civilian use) travels by line of sight,
which means that it will pass through clouds, glass and
plastic but will not pass through most solid objects such
as buildings, overpasses, earth, automobile bodies and
mountains. It even has a hard time passing through
water.

• Accuracy is hard to maintain because signal delay errors
can be introduced in the atmosphere through reflection
off tall buildings and rocks and through use of the
internal GPS clock. Additionally, orbital errors can be
encountered where the reported satellite location is
inaccurate.

• Buildings, terrain, electronic interference and more can
restrict satellite “visibility”.

• Poor placement of satellites (e.g. located in the line of
sight or in a tight grouping) can degrade accuracy.

Supported Modes

The GPS implementation for BlackBerry includes Autono-
mous mode, Assisted mode, and Cellsite mode. If you’ve
managed to read this far, then you are pretty knowledgeable
about Autonomous mode. We’ll cover the other modes here.

Cellsite Mode

Provides the GPS coordinate of the serving cellsite node.
This mode provides the least accurate location information
in the fastest possible time. It is useful when rapid emergen-
cy assistance is required and broad strokes positioning will
suffice. It uses cell tower location to calculate approximate
positioning. Accuracy is very poor in rural areas where cell
tower density is sparse. Conversely, dense urban areas with
dense concentrations of cell towers will improve accuracy,
often times to within a few city blocks.

Assisted Mode

Uses the network in an assisted mode. It is more accurate
than cellsite mode but takes more time to obtain location in-
formation due to wireless latency and server response times.

Volume 3, Issue 1 49 BlackBerry Developer Journal

It works by providing some information to a remote server
for processing. The device makes a request for “assist data”
from the server on the carrier network which has location in-
formation. The server will respond with “assist data” (which
includes ephemeris, ionospheric modeling, etc). The greatest
benefit of assisted GPS (aGPS) over autonomous GPS is the
response time. Initial aGPS responses can return in under 10
seconds depending on network latency. Autonomous GPS
takes longer to determine the initial position, but is fast for
all subsequent positions.

GPS for BlackBerry

The Chip

The current implementation of the BlackBerry 7520™ uses a
SiRFstarIIe/LP chipset to provide GPS services. Note that
the chip used to provide GPS services may change over time.

This chip set supports Satellite Based Augmentation System
(SBAS), which encompasses WAAS and the European Geo-
stationary Navigation Overlay Service (EGNOS). It also
provides support for Coast Guard Maritime Differential GPS
(DGPS).

The chip cold starts in 45 seconds, uses less than 175 mW at
full power, and will automatically support a mode to reduce
power to under 60 mW and under 20 mA.

The manufacturer states that positional accuracy is less than
10 meters for autonomous GPS, less than 5 meters when
WAAS is enabled, and less than 2.5 meters when enabled for
Beacon DGPS. The chip is accurate beneath 60,000 feet, and
under 1,000 knots (1,152 mph or 1,850 kph).

Source: http://www.sirf.com/products-ss2eLP.html

GPS coding in brief

try {
// Create a Criteria object for
// defining selection criteria
Criteria cr = new Criteria();

//
// setAddressInfoRequired()
// true: if location provider should be able
// to determine textual address information
// there is no guarantee that AddressInfo
// is available in any mode
// Default = false
//
// Note: in the current implementation,
// setAddressInfoRequired() has no impact
// on results
//

// cr.setAddressInfoRequired(false);

//
// setAltitudeRequired()
// true: if location provider should be able
// to determine device altitude

// AUTONOMOUS GPS is only mode that could
// provide this information
// Default = false
//
// Note: in the current implementation,
// setAltitudeRequired() has no impact
// on results
//

// cr.setAltitudeRequired(false);

//
// setPreferredResponseTime()
// value: response time or timeout if the
// response isn't provided in time
// default: NO_REQUIREMENT
//
// Note: in the current implementation,
// setPreferredResponseTime() has no impact
// on results
//

// cr.setPreferredResponseTime(NO_REQUIREMENT);

//
// setSpeedAndCourseRequired()
// true: location provider should be able to
// determine speed and course
// Speed and course should be available in
// all three modes
// Default = false
//
// Note: in the current implementation,
// setSpeedAndCourseRequired() has no
// impact on results
//

// cr.setSpeedAndCourseRequired(false);

//
// setCostAllowed()
// Default = true
// true: if there can be a cost associated
// with determining location information
// ASSISTED GPS is only mode that could
// incur a direct cost
//
cr.setCostAllowed(true);

//
// setHorizontalAccuracy()
// Default = NO_REQUIREMENT
// value: the desired horizonal accuracy
// in meters
// Use NO_REQUIREMENT or a larger value (500
// meters) for assisted and cellsite
// set a lower value (such as 10 meters)
// for autonomous
//
cr.setHorizontalAccuracy(NO_REQUIREMENT);

//
// setPreferredPowerConsumption()

Volume 3, Issue 1 50 BlackBerry Developer Journal

// Default = NO_REQUIREMENT
// POWER_LEVEL_LOW autonomous, cellsite
// POWER_LEVEL_MEDIUM autonomous, assisted
// POWER_LEVEL_HIGH autonomous, assisted
// NO_REQUIREMENT autonomous, assisted
//
cr.setPreferredPowerConsumption
(NO_REQUIREMENT);

//
// setVerticalAccuracy()
// Default = NO_REQUIREMENT
// value: the desired vertical accuracy
// in meters
// Use NO_REQUIREMENT or a larger value
// (500 meters) for assisted and cellsite
// set a lower value (such as 10 meters)
// for autonomous
//
cr.setVerticalAccuracy(NO_REQUIREMENT);

//
// set up a location provider instance
//
LocationProvider lp =
LocationProvider.getInstance(cr);

//
// Get location, one minute timeout
// leave up to 180 seconds for autonomous mode
//
Location l = lp.getLocation(60);

Coordinates c = l.getQualifiedCoordinates();

if (c != null) {
// use coordinate information
double latitude = c.getLatitude();
double longitude = c.getLongitude();
float altitude = c.getAltitude();

}

} catch (LocationException e) {
// Not able to retrieve location information
...

}
}

The API

BlackBerry supports JSR-179: Location API for Java ME,
and uses the javax.microedition.location package which con-
sists of the following functionality:

Interface: LocationListener

A listener that receives events associated with a particular
LocationProvider. Applications implement this interface and
register it with a LocationProvider to obtain regular position
updates. If location updates cannot be provided at the de-

fined interval, then an update can be sent to the listener that
contains an 'invalid' Location instance. Applications are re-
sponsible for any possible synchronization needed in the lis-
tener methods. The listener methods must return quickly and
should not perform any extensive processing. The method
calls are intended as triggers to the application. An applica-
tion should do any necessary extensive processing in a sepa-
rate thread and only use these methods to initiate processing.

Method
LocationListener.locationUpdated

Syntax:

void locationUpdated
(
LocationProvider provider,
Location location

)

Description:

Called by the LocationProvider to which this listener has
been registered. This method will be called periodically ac-
cording to the interval defined when registering the listener
to provide updates of the current location. The parameters
are the source of the event (provider), and the new position
(location).

Method:
LocationListener.providerStateChanged

Syntax:

void providerStateChanged
(
LocationProvider provider,
int newState

)

Description:

Called by the LocationProvider to which this listener has
been registered when the state of the LocationProvider
changes.

Provided state changes are delivered to the application as
soon as possible after the state of a provider changes. The
timing of these events are not related to the period of the lo-
cation updates.

If the application is subscribed to receive periodic location
updates, it will continue to receive these regardless of the
state of the LocationProvider. If the application wishes to
stop receiving location updates for an unavailable provider,
it should de-register itself from the provider.

The parameters are the source of the event (provider), and
the new state of the LocationProvider (newState), which is a
constant value defined in the LocationProvider class as
shown below:

• AVAILABLE

• OUT_OF_SERVICE

• TEMPORARILY_UNAVAILABLE

Volume 3, Issue 1 51 BlackBerry Developer Journal

Interface: ProximityListener

A listener to events associated with detecting proximity to
some registered coordinates. Applications implement this in-
terface and register it with a static method in LocationPro-
vider to obtain notfications when proximity to registered
coordinates has been detected.

This listener is called when the device enters the proximity
of the registered coordinates. The proximity is defined as the
proximity radius around the coordinates combined with the
horizontal accuracy of the current sampled location.

The listener is called only once when the device enters the
proximity of the registered coordinates. The registration with
these coordinates is cancelled when the listener is called. If
the application wants to be notified again about these coordi-
nates, it must re-register the coordinates and the listener.

Method:
ProximityListener.monitoringStateChanged

Syntax:

void monitoringStateChanged
(boolean isMonitoringActive)

Description:

Called to notify that the state of the proximity monitoring
has changed. These state changes are delivered to the appli-
cation as soon as possible after the state of the monitoring
changes. The ProximityListener always remains registered
until the application explicitly removes it with LocationPro-
vider.removeProximityListener or when the application ex-
its.

The parameter is a boolean (isMonitoringActive) indicating
the new state of the proximity monitoring. A value of true in-
dicates that the proximity monitoring is active.

Method:
ProximityListener.proximityEvent

Syntax:

void proximityEvent
(
Coordinates coordinates,
Location location

)

Description:

After registering this listener with the LocationProvider, this
method will be called the current location of the deviceis
within the defined proximity radius of the registered coordi-
nates.

The parameters are the registered coordinates to which prox-
imity has been detected (coordinates), and the current loca-
tion of the device (location).

Class: AddressInfo

This class holds textual address information about a location.
Typically the information is a street address where the infor-
mation is divided into fields (e.g. street, postal code, city,
etc.). Defined field constants can be used to retrieve field da-
ta. If the value of a field is not available, it is set to null.

The names of the fields use terms and definitions that are
commonly used in the United States. Addresses for other
countries should map these to the closest corresponding enti-
ties used in that country.

This class is only a container for the information. The get-
Field method returns the value set for the defined field using
the setField method.

Constructor
AddressInfo()

Method:
AddressInfo.getField

Syntax:

java.lang.String getField(int field)

Description:

Returns the value of an address field or null if the field is not
available.

The parameter is the ID of the field to be retrieved.

Fields Notes
STREET

EXTENSION Unit, flat, apartment number

POSTAL_CODE Postal or zip code

CITY Village, town or city

COUNTY

STATE State or province

COUNTRY

COUNTRY_CODE Two-letter ISO 3166-1 code

DISTRICT Municipal district

BUILDING_NAME

BUILDING_FLOOR

BUILDING_ROOM

BUILDING_ZONE

CROSSING1 Street in a crossing

CROSSING2 Street in a crossing

URL

PHONE_NUMBER

Volume 3, Issue 1 52 BlackBerry Developer Journal

This method will throw java.lang.IllegalArgumentExcep-
tion if the parameter field ID is not one of the constant values
defined in this class

Method:
AddressInfo.setField

Syntax:

void setField(int field, java.lang.String value)

Description:

Sets the value of an address field.

The parameters are the ID of the field to be set and the new
value for the field. null is used to indicate that the field has
no content.

This method throws java.lang.IllegalArgumentException if
the parameter field ID is not one of the constant values de-
fined in this class

Class: Coordinates

Represents coordinates as latitude-longitude-altitude values.
The latitude and longitude values are expressed in degrees
using floating point values. The degrees are in decimal val-
ues (rather than minutes/seconds). The coordinates are given
using the WGS84 datum., which is a set of conventions, con-
stants and formulae. For more information:

http://www.gps.gov.uk/guide4.asp

This class also provides convenience methods for converting
between a string coordinate representation and the double
representation used in this class.

Constructor
public Coordinates
(
double latitude,
double longitude,
float altitude

)

Constructs a new Coordinates object with the values speci-
fied. The latitude and longitude parameters are expressed in
degrees using floating point values. The degrees are in deci-
mal values (rather than minutes/seconds). The coordinate
values always apply to the WGS84 datum. The Float.NaN
value can be used for altitude to indicate that altitude is not
known.

Parameters:

latitude

• Latitude of the location. Valid range: [-90.0, 90.0].

• Positive values indicate northern latitude and negative
values southern latitude.

longitude

• Longitude of the location. Valid range: [-180.0, 180.0).

• Positive values indicate eastern longitude and negative
values western longitude.

altitude

• Altitude of the location in meters, defined as height
above WGS84 ellipsoid.

• Float.NaN can be used to indicate that altitude is not
known.

The constructor throws java.lang.IllegalArgumentException
if an input parameter is out of the valid range.

Method:
Coordinates.getLatitude

Syntax:

public double getLatitude()

Description

Returns the latitude component in degrees of this coordinate.
Positive values indicate northern latitude and negative values
southern latitude. The latitude is given in WGS84 datum.

Method:
Coordinates.getLongitude

Syntax:

public double getLongitude()

Description

Returns the longitude component in degrees of this coordi-
nate. Positive values indicate eastern longitude and negative
values western longitude. The longitude is given in WGS84
datum.

Method:
Coordinates.getAltitude

Syntax:

public float getAltitude()

Description

Returns the altitude component in meters of this coordinate.
Altitude is defined to mean height above the WGS84 refer-
ence ellipsoid. 0.0 means a location at the ellipsoid surface,
negative values mean the location is below the ellipsoid sur-
face, Float.NaN that no altitude is not available.

Field Description
DD_MM_SS Identifier for string coordinate

representation Degrees, Minutes, Seconds
and decimal fractions of a second

DD_MM Identifier for string coordinate
representation Degrees, Minutes, decimal
fractions of a minute

Volume 3, Issue 1 53 BlackBerry Developer Journal

Method:
Coordinates.setAltitude

Syntax:

public void setAltitude(float altitude)

Description:

Sets the geodetic altitude for this point. The parameter
passed is the altitude of the location in meters, defined as
height above the WGS84 ellipsoid. 0.0 means a location at
the ellipsoid surface, negative values mean the location is
below the ellipsoid surface, Float.NaN that no altitude is not
available

Method:
Coordinates.setLatitude

Syntax:

public void setLatitude(double latitude)

Description:

Sets the geodetic latitude for this point. Latitude is given as a
double expressing the latitude in degrees in the WGS84 da-
tum. The parameter passed is the latitude component of this
location in degrees. Valid range: [-90.0, 90.0].

This method will throw java.lang.IllegalArgumentExcep-
tion if the latitude is out of the valid range.

Method:
Coordinates.setLongitude

Syntax:

public void setLongitude(double longitude)

Description:

Sets the geodetic longitude for this point. Longitude is given
as a double expressing the longitude in degrees in the
WGS84 datum.

The parameter passed is the longitude of the location in de-
grees. Valid range: [-180.0, 180.0)

This method throws java.lang.IllegalArgumentException if
longitude is out of the valid range.

Method:
Coordinates.convert

Syntax:

public static double convert
(java.lang.String coordinate)

Description:

Converts a String representation of a coordinate into float
representation as used in this API. There are two string syn-
taxes supported:

1. Degrees, minutes, seconds and decimal fractions of sec-
onds. This is expressed as a string complying with the

following Bibliotheque national de France (BNF) defi-
nition where the degrees are within the range [-179,
179] and the minutes and seconds are within the range
[0, 59], or the degrees is -180 and the minutes, seconds
and decimal fractions are 0:

coordinate =
degrees ":" minutes ":" seconds "." decimalfrac
| degrees ":" minutes ":" seconds
| degrees ":" minutes

degrees = degreedigits | "-" degreedigits
degreedigits =
digit | nonzerodigit digit | "1" digit digit

minutes = minsecfirstdigit digit
seconds = minsecfirstdigit digit
decimalfrac = 1*3digit
digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"
nonzerodigit = "1"|"2"|"3"|"4|"5"|"6"|"7"|"8"|"9"
minsecfirstdigit = "0"|"1"|"2"|"3"|"4"|"5"

2. Degrees, minutes and decimal fractions of minutes. This
is expressed as a string complying with the following
BNF definition where the degrees are within the range
[-179, 179] and the minutes are within the range [0, 59],
or the degrees is -180 and the minutes and decimal frac-
tions are 0:

coordinate = degrees ":" minutes "." decimalfrac
| degrees ":" minutes

degrees = degreedigits | "-" degreedigits
degreedigits =
digit | nonzerodigit digit | "1" digit digit

minutes = minsecfirstdigit digit
decimalfrac = 1*5digit
digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"
nonzerodigit = "1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"
minsecfirstdigit = "0"|"1"|"2"|"3"|"4"|"5"

For example, for the double value of the coordinate 61.51d,
the corresponding syntax #1 string is "61:30:36" and the cor-
responding syntax #2 string is "61:30.6"

The single parameter passed is a String in either of the two
representation specified above.

The method returns a double value with decimal degrees that
matches the String representation given as the parameter.

This method will throw:

java.lang.IllegalArgumentException

• The coordinate input parameter does not comply with
the defined syntax for the indicated type or if the
inputType is not one of the two constant values defined
in this class

java.lang.NullPointerException

• The coordinate string is null

Volume 3, Issue 1 54 BlackBerry Developer Journal

Method:
Coordinates.convert

Syntax:

public static java.lang.String convert
(
double coordinate,
int outputType

)

Description

Converts a double representation of a coordinate with deci-
mal degrees into a string representation.

Parameters:

coordinate

• A double representation of a coordinate

outputType

• Type ID of the string representation wanted for output
The constant DD_MM_SS identifies the syntax #1 and
the constant DD_MM identifies the syntax #2.

This method returns a String representation of the coordinate
in a format based on the parameter.

The method will throw java.lang.IllegalArgumentException
if the outputType is not one of the two constant values de-
fined in this class or if the coordinate value is not within the
range [-180.0, 180.0) or is Double.Na.

Method:
Coordinates.distance

Syntax:

public float distance(Coordinates to)

Description:

Calculates the geodetic distance in meters between the two
points according to the ellipsoid model of WGS84. Altitude
is left out of the calculations.

This method will throw java.lang.NullPointerException if
the parameter is null.

Method:
Coordinates.azimuthTo

Syntax:

public float azimuthTo(Coordinates to)

Description:

Calculates the azimuth between the two points according to
the ellipsoid model of WGS84. The azimuth is relative to
true north. The Coordinates object on which this method is
called is considered the origin for the calculation and the Co-
ordinates object passed as a parameter is the destination
which the azimuth is calculated to. When the origin is the
North pole and the destination is not the North pole, this
method returns 180.0. When the origin is the South pole and
the destination is not the South pole, this method returns 0.0.

If the origin is equal to the destination, this method returns
0.0. The implementation shall calculate the result as exactly
as it can. However, it is required that the result is within 1
degree of the correct result.

This method will throw java.lang.NullPointerException if
the parameter is null.

Class: Criteria

The criteria used for the selection of the location provider is
defined by the values in this class. Instances of Criteria are
used by the application to indicate criteria for choosing the
location provider in the LocationProvider.getInstance meth-
od call.

The default values for the criteria fields are specified below
in the table. The default values are always the least restric-
tive option that will match all location providers. Default
values:

The implementation of this class only retains the values that
are passed in using the set* methods. It does not try to vali-
date the values of the parameters in any way. Applications
may set any values, even negative values, but the conse-
quence may be that no matching LocationProvider can be
created.

NO_REQUIREMENT

• No requirements for the parameter

POWER_USAGE_HIGH

• High power consumption allowed

POWER_USAGE_LOW

• Only low power consumption allowed

POWER_USAGE_MEDIUM

• Average power consumption allowed

Criteria field Default value
Horizontal accuracy NO_REQUIREMENT

Vertical accuracy NO_REQUIREMENT

Preferred response time NO_REQUIREMENT

Power consumption NO_REQUIREMENT

Cost allowed true (allowed to cost)

Speed and course required false (not required)

Altitude required false (not required)

Address info required false (not required)

Volume 3, Issue 1 55 BlackBerry Developer Journal

Constructor
Criteria()

Method:
Criteria.getHorizontalAccuracy

Syntax:

int getHorizontalAccuracy()

Description:

Returns the horizontal accuracy in meters that has been set in
this Criteria.

Method:
Criteria.getPreferredPowerConsumption

Syntax:

int getPreferredPowerConsumption()

Description:

Returns the preferred power consumption level.

• NO_REQUIREMENT

• POWER_LEVEL_LOW

• POWER_LEVEL_MEDIUM

• POWER_LEVEL_HIGH

Method:
Criteria.getPreferredResponseTime

Syntax:

int getPreferredResponseTime()

Description:

Returns the preferred maximum response time in millisec-
onds.

Method:
Criteria.getVerticalAccuracy

Syntax:

int getVerticalAccuracy()

Description:

Returns the vertical accuracy value in meters that has been
set in this Criteria.

Method:
Criteria.isAddressInfoRequired

Syntax:

boolean isAddressInfoRequired()

Description:

Returns true if the location provider should be able to deter-
mine textual address information.

Method:
Criteria.isAllowedToCost

Syntax:

boolean isAllowedToCost()

Description:

Returns the preferred cost setting: true if allowed to cost,
false if it must be free of charge

Method:
Criteria.isAltitudeRequired

Syntax:

boolean isAltitudeRequired()

Horizontal
Accuracy

Vertical Accuracy Cost Power Consumption Resulting Mode

Required - Set a value Required - Set a value false
Not allowed

N/A GPS_AID_MODE_AUTONOMOUS

Required - Set a value Required - Set a value true
Allowed

POWER_USAGE_LOW,
POWER_USAGE_MEDIUM or
NO_REQUIREMENT

GPS_AID_MODE_AUTONOMOUS

Required - Set a value Required - Set a value true
Allowed

POWER_USAGE_HIGH 1st fix - GPS_AID_MODE_ASSIST
Subsequent fixes -
GPS_AID_MODE_AUTONOMOUS

NO_REQUIREMENT NO_REQUIREMENT false
Not allowed

POWER_USAGE_MEDIUM or
POWER_USAGE_HIGH or
NO_REQUIREMENT

GPS_AID_MODE_AUTONOMOUS

NO_REQUIREMENT NO_REQUIREMENT true
Allowed

POWER_USAGE_MEDIUM or
NO_REQUIREMENT

GPS_AID_MODE_ASSIST

NO_REQUIREMENT NO_REQUIREMENT true
Allowed

POWER_USAGE_HIGH 1st fix - GPS_AID_MODE_ASSIST
Subsequent fixes -
GPS_AID_MODE_AUTONOMOUS

NO_REQUIREMENT NO_REQUIREMENT true
Allowed

POWER_USAGE_LOW GPS_AID_MODE_CELLSITE

Volume 3, Issue 1 56 BlackBerry Developer Journal

Description:

Returns true if the location provider should be able to deter-
mine altitude.

Method:
Criteria.isSpeedAndCourseRequired

Syntax:

boolean isSpeedAndCourseRequired()

Description:

Returns true if the location provider should be able to deter-
mine speed and course.

Method:
Criteria.setAddressInfoRequired

Syntax:

void setAddressInfoRequired
(boolean addressInfoRequired)

Description:

Sets whether the location provider should be able to deter-
mine textual address information. The default is false. Set-
ting this criteria to true implies that a location provider
should be selected that is capable of providing the textual ad-
dress information. This does not mean that every returned lo-
cation instance necessarily will have all the address
information filled in, though.

Method:
Criteria.setAltitudeRequired

Syntax:

void setAltitudeRequired
(boolean altitudeRequired)

Description:

Sets whether the location provider should be able to deter-
mine altitude. Default is false. If set to true, the LocationPro-
vider is required to be able to normally determine the
altitude.

Method:
Criteria.setCostAllowed

Syntax:

void setCostAllowed(boolean costAllowed)

Description:

Sets the preferred cost setting where requests for location de-
termination is allowed to incur financial cost to the user of
the terminal. The default condition is true.

Method:
Criteria.setHorizontalAccuracy

Syntax:

void setHorizontalAccuracy(int accuracy)

Description:

Sets the desired maximum horizontal accuracy preference in
meters. The default is NO_REQUIREMENT, meaning no
preference on horizontal accuracy.

Method:
Criteria.setPreferredPowerConsumption

Syntax:

void setPreferredPowerConsumption(int level)

Description:

Sets the preferred maximum level of power consumption.

• NO_REQUIREMENT (default)

• POWER_LEVEL_LOW

• POWER_LEVEL_MEDIUM

• POWER_LEVEL_HIGH

Method:
Criteria.setPreferredResponseTime

Syntax:

void setPreferredResponseTime(int time)

Description:

Sets the desired maximum response time preference in milli-
seconds. This value is typically used to determine a location
method that is able to produce the location information with-
in the defined time. The value is also used as a timeout value
if the result cannot be produced within the defined time. The
default is NO_REQUIREMENT, meaning no response time
constraint.

Method:
Criteria.setSpeedAndCourseRequired

Syntax:

void setSpeedAndCourseRequired
(boolean speedAndCourseRequired)

Description:

Sets whether the location provider should be able to deter-
mine speed and course. The default is false. If set to true, the
LocationProvider is required to be able to normally deter-
mine the speed and course.

Method:
Criteria.setVerticalAccuracy

Syntax:

void setVerticalAccuracy(int accuracy)

Description:

Sets the desired vertical accuracy preference in meters. The
default is NO_REQUIREMENT, meaning no preference on
vertical accuracy.

Volume 3, Issue 1 57 BlackBerry Developer Journal

Class: Landmark

Represents a landmark, which is a known location with a
name. A landmark has a name by which it is known to the
end user, a textual description, QualifiedCoordinates and op-
tionally AddressInfo.

This class is only a container for the information. The con-
structor does not validate the parameters passed in but just
stores the values, except that the name field is never allowed
to be null. The get* methods return the values passed in the
constructor.

Constructor
Landmark
(
// Name of the landmark
java.lang.String name,
// Description of the landmark.
// May be null if not available
java.lang.String description,
// The Coordinates of the landmark.
// May be null if not known.
QualifiedCoordinates coordinates,
// The textual address information of the
// landmark. May be null if not known.
AddressInfo addressInfo

)

The constructor will throw java.lang.NullPointerException if
the name is null.

Method:
Landmark.getAddressInfo

Syntax:

AddressInfo getAddressInfo()

Description:

Gets the AddressInfo of the landmark.

Method:
Landmark.getDescription

Syntax:

java.lang.String getDescription()

Description:

Gets the landmark description, null if not available.

Method:
Landmark.getDescription

Syntax:

java.lang.String getName()

Description:

Gets the landmark name.

Method:
Landmark.getQualifiedCoordinates

Syntax:

QualifiedCoordinates getQualifiedCoordinates()

Description:

Gets the QualifiedCoordinates of the landmark, null if not
available.

Method:
Landmark.setAddressInfo

Syntax:

void setAddressInfo(AddressInfo addressInfo)

Description:

Sets the AddressInfo of the landmark.

Method:
Landmark.setDescription

Syntax:

void setDescription
(java.lang.String description)

Description:

Sets the description of the landmark. Pass null to indicate
that description is not available.

Method:
Landmark.setName

Syntax:

void setName(java.lang.String name)

Description:

Sets the name of the landmark.

Method:
Landmark.setQualifiedCoordinates

Syntax:

void setQualifiedCoordinates
(QualifiedCoordinates cooordinates)

Description:

Sets the QualifiedCoordinates of the landmark.

Class: LandmarkStore

Provides methods to store, delete and retrieve landmarks
from a persistent landmark store. There is one default land-
mark store and there may be multiple other landmark stores
with different names. All landmark stores must be shared be-
tween all Java ME applications. Named landmark stores
have unique names in this API.

The Landmarks have a name and may be placed in a catego-
ry or several categories. The category is intended to group
landmarks that are of similar type to the end user, for exam-
ple, restaurants, museums, etc. The landmark names are
strings that identify the landmark to the end user. The cate-
gory names describe the category to the end user. The lan-

Volume 3, Issue 1 58 BlackBerry Developer Journal

guage used in the names may be any and depends on the
preferences of the end user. The names of the categories are
unique within a LandmarkStore. However, the names of the
landmarks are not guaranteed to be unique. Landmarks with
the same name can appear in multiple categories or even sev-
eral Landmarks with the same name in the same category.

The Landmark objects returned from the getLandmarks
methods in this class shall guarantee that the application can
read a consistent set of the landmark data valid at the time of
obtaining the object instance, even if the landmark informa-
tion in the store is modified subsequently by this or some
other application.

The Landmark object instances can be in two states:

• Initially constructed by an application
• Belongs to a LandmarkStore
A Landmark object belongs to a LandmarkStore if it has
been obtained from the LandmarkStore using getLandmarks
or if it has been added to the LandmarkStore using addLand-
mark. A Landmark object is initially constructed by an appli-
cation when it has been constructed using the constructor but
has not been added to a LandmarkStore using addLandmark.

The landmark stores created by an application and land-
marks added in landmark stores persist even if the applica-
tion itself is deleted from the device.

Accessing the landmark store may cause a SecurityExcep-
tion if the calling application does not have the required per-
missions. The permissions to read and write (including add
and delete) landmarks are distinct. An application having
permission to read landmarks wouldn't necessarily have the
permission to delete them.

Method:
LandmarkStore.addCategory

Syntax:

void addCategory(java.lang.String categoryName)

Description:

Adds a category to this LandmarkStore.

This method will throw:

java.lang.IllegalArgumentException

• A category with the specified name already exists

java.lang.NullPointerException

• The parameter is null

javax.microedition.location.LandmarkException

• This LandmarkStore does not support adding new
categories

java.io.IOException

• An I/O error occurs or there are no resources to add a
new category

java.lang.SecurityException

• The application does not have the permission to manage
categories

Method:
LandmarkStore.addLandmark

Syntax:

void addLandmark
(
Landmark landmark,
java.lang.String category

)

Description

Adds a landmark to the specified category in the landmark
store. Pass null as the category to indicate that the landmark
does not belong to a category. Both parameters have a maxi-
mum length of 32 characters.

This method will throw:

java.lang.SecurityException

• The application is not allowed to add landmarks.

java.lang.IllegalArgumentException

• The landmark has a longer name field than the
implementation can support or if the category defined in
the landmark is not one of the categories supported by
this LandmarkStore.

java.io.IOException

• An I/O error happened when accessing the landmark
database or if there are no resources available to store
this landmark.

java.lang.NullPointerException

• The landmark parameter is null.

Method:
LandmarkStore.createLandmarkStore

Syntax:

static void createLandmarkStore
(java.lang.String storeName)

Description:

Creates a new landmark store with a specified name.All
LandmarkStores are shared between all Java ME applica-
tions and may be shared with native applications.

This method will throw:

java.lang.IllegalArgumentException

• The name is too long or if a landmark store with the
specified name already exists

java.lang.NullPointerException

• The parameter is null

Volume 3, Issue 1 59 BlackBerry Developer Journal

javax.microedition.location.LandmarkException

• The implementation does not support creating new
landmark stores

java.io.IOException

• The landmark store couldn’t be created due to an I/O
error

java.lang.SecurityException

• The application does not have permissions to create a
new landmark store

Method:
LandmarkStore.deleteCategory

Syntax:

void deleteCategory
(java.lang.String categoryName)

Description

Removes a category from this LandmarkStore. This method
will not remove any of the landmarks, only the associated
category information from the landmarks. If a category with
the supplied name does not exist in this LandmarkStore, the
method returns silently with no error.

This method will throw:

java.lang.NullPointerException

• The parameter is null

javax.microedition.location.LandmarkException

• This LandmarkStore does not support deleting
categories

java.io.IOException

• An I/O error occurs

java.lang.SecurityException

• The application does not have the permission to manage
categories

Method:
LandmarkStore.deleteLandmark

Syntax:

void deleteLandmark(Landmark lm)

Description:

Removes a landmark from all categories and deletes the in-
formation from this LandmarkStore. The Landmark instance
passed in as the parameter must be an instance that belongs
to this LandmarkStore. If the Landmark is not found in this
LandmarkStore, then the request is silently ignored and the
method call returns with no error.

This method will throw:

java.lang.SecurityException

• The application is not allowed to delete the landmark

javax.microedition.location.LandmarkException

• The landmark instance passed as the parameter does not
belong to this LandmarkStore

java.io.IOException

• An I/O error happened when accessing the landmark
store

java.lang.NullPointerException

• The parameter is null

Method:
LandmarkStore.deleteLandmarkStore

Syntax:

static void deleteLandmarkStore
(java.lang.String storeName)

Description:

Delete a landmark store with a specified name. All the land-
marks and categories defined in the named landmark store
are irrevocably removed. If a landmark store with the speci-
fied name does not exist, this method returns silently without
any error.

This method will throw:

java.lang.NullPointerException

• The parameter is null (the default landmark store can’t
be deleted)

javax.microedition.location.LandmarkException

• The implementation does not support deleting landmark
stores

java.io.IOException

• The landmark store couldn’t be deleted due to an I/O
error

java.lang.SecurityException

• The application does not have permissions to delete a
landmark store

Method:
LandmarkStore.getCategories

Syntax:

java.util.Enumeration getCategories()

Description:

Returns the category names that are defined in this Land-
markStore. The language and locale used for these names de-
pends on the implementation and end user settings. The
names shall be such that they can be displayed to the end us-
er and have a meaning to the end user.

This method returns an java.util.Enumeration containing
Strings representing the category names. If there are no cate-
gories defined in this LandmarkStore, an Enumeration with
no entries is returned.

Volume 3, Issue 1 60 BlackBerry Developer Journal

Method:
LandmarkStore.getInstance

Syntax:

static LandmarkStore getInstance
(java.lang.String storeName)

Description:

Gets a LandmarkStore instance for storing, deleting and re-
trieving landmarks. There must be one default landmark
store and there may be other landmark stores that can be ac-
cessed by name. If null is passed, the default landmark store
will be returned. Throws java.lang.SecurityException if the
application does not have a permission to read landmark
stores.

Method:
LandmarkStore.getLandmarks

Syntax:

java.util.Enumeration getLandmarks()

Description:

Lists all landmarks stored in the database and returns an ja-
va.util.Enumeration object containing Landmark objects rep-
resenting all the landmarks stored in this LandmarkStore.
The method will throw a java.io.IOException if an I/O error
happened when accessing the landmark database.

Method:
LandmarkStore.getLandmarks

Syntax:

java.util.Enumeration getLandmarks
(
java.lang.String category,
double minLatitude,
double maxLatitude,
double minLongitude,
double maxLongitude

)

Description:

Lists all the landmarks that are within an area defined by
bounding minimum and maximum latitude and longitude.
The bounds are considered to belong to the area.

If minLongitude <= maxLongitude, then this area covers the
longitude range [minLongitude, maxLongitude].

If minLongitude > maxLongitude, then this area covers the
longitude range [-180.0, maxLongitude] and [minLongitude,
180.0).

For latitude, the area covers the latitude range [minLatitude,
maxLatitude].

This method will throw java.io.IOException if an I/O error
happened when accessing the landmark database, and will
throw java.lang.IllegalArgumentException if the minLongi-

tude or maxLongitude is out of the range [-180.0, 180.0), or
minLa t i tude o r minLong i tude i s ou t o f the r ange
[-90.0,90.0], or if minLatitude > maxLatitude

Method:
LandmarkStore.getLandmarks

Syntax:

java.util.Enumeration getLandmarks
(
java.lang.String category,
java.lang.String name

)

Description:

Gets the Landmarks from the storage where the category
and/or name matches the given parameters. The category of
the landmark is passed, or null which implies a wildcard that
matches all categories. The name of the desired landmark is
also passed where null implies a wildcard that matches all
the names within the category indicated by the category pa-
rameter.

This method returns an Enumeration containing all the
matching Landmarks or null if no Landmark matched the
given parameters.

This method throws java.io.IOException if an I/O error hap-
pened when accessing the landmark database.

Method:
LandmarkStore.listLandmarkStores

Syntax:

static java.lang.String[] listLandmarkStores()

Description:

Lists the names of all the available landmark stores.The de-
fault landmark store is obtained from getInstance by passing
null as the parameter. The null name for the default landmark
store is not included in the list returned by this method. If
there are no named landmark stores, other than the default
landmark store, this method returns null.

This method returns an array of landmark store names, and
will throw:

java.lang.SecurityException

• The application does not have the permission to access
landmark stores.

java.io.IOException

• An I/O error occurred when trying to access the
landmark stores.

Method:
LandmarkStore.removeLandmarkFromCategory

Syntax:

void removeLandmarkFromCategory
(
Landmark lm,
java.lang.String category

)

Volume 3, Issue 1 61 BlackBerry Developer Journal

Description:

Removes the named landmark from the specified category.

The Landmark instance passed in as the parameter must be
an instance that belongs to this LandmarkStore.

If the Landmark is not found in this LandmarkStore in the
specified category or if the parameter is a Landmark instance
that does not belong to this LandmarkStore, then the request
is silently ignored and the method call returns with no error.
The request is also silently ignored if the specified category
does not exist in this LandmarkStore.

The landmark is only removed from the specified category
but the landmark information is retained in the store. If the
landmark no longer belongs to any category, it can still be
obtained from the store by passing null as the category to
getLandmarks.

This method will throw:

java.lang.NullPointerException

• At least one parameter is null.

java.io.IOException

• An I/O error happened when accessing the landmark
store.

java.lang.SecurityException

• The application is not allowed to the landmark.

Method:
LandmarkStore.updateLandmark

Syntax:

void updateLandmark(Landmark lm)

Description:

Updates the information about a landmark. This method only
updates the information about a landmark and does not mod-
ify the categories the landmark belongs to. The Landmark
instance passed in as the parameter must be an instance that
belongs to this LandmarkStore. This method can’t be used to
add a new landmark to the store.

This method will throw:

java.lang.NullPointerException

• The parameter is null.

javax.microedition.location.LandmarkException

• The landmark instance passed as the parameter does not
belong to this LandmarkStore or does not exist in the
store any more.

java.io.IOException

• An I/O error happened when accessing the landmark
store.

java.lang.SecurityException

• The application is not allowed to update the landmark.

Class: Location

Represents the standard set of basic location information.
This includes the time stamped coordinates, accuracy, speed,
heading, and information about the positioning method used
for the location, plus an optional address.

The location method is indicated using a bit field. The indi-
vidual bits are defined using constants in this class. This bit
field is a bitwise combination of the location method tech-
nology bits (MTE_*), method type (MTY_*) and method as-
sistance information (MTA_*). All other bits in the 32 bit
integer than those that have defined constants in this class
are reserved and MUST not be set by implementations (i.e.
these bits must be 0).

A Location object may be either 'valid' or 'invalid'. The va-
lidity can be queried using the isValid method. A valid Loca-
tion object represents a location with valid coordinates. An
invalid Location object doesn't have valid coordinates, but
the extra info that is obtained from the getExtraInfo method
can provide information about the reason why it was not pos-
sible to provide a valid Location. The periodic location up-
dates to the LocationListener may return invalid Location
objects if it isn't possible to determine the location. This
class is only a container for the information.

Field Description
MTA_ASSISTED Location method is

assisted by the other
party

MTA_UNASSISTED Location method is
unassisted

MTE_ANGLEOFARRIVAL Location method Angle
of Arrival for cellular /
terrestrial RF system.

MTE_CELLID Location method
Cell-ID for cellular (in
GSM, this is the same as
Cell Global Identity
(CGI))

MTE_SATELLITE Location method using
satellites (for example,
Global Positioning
System (GPS))

MTE_SHORTRANGE Location method
Short-range positioning
system (for example,
Bluetooth LP)

Volume 3, Issue 1 62 BlackBerry Developer Journal

Constructor
Location()

Method:
Location.getAddressInfo

Syntax:

AddressInfo getAddressInfo()

Description:

Returns null because the RIM implementation does not sup-
port textual address.

Method:
Location.getCourse

Syntax:

float getCourse()

Description:

Returns the device’s course in degrees relative to true north.
The value is always in the range [0.0,360.0) degrees. Returns
Float.NaN if the course is not known.

Method:
Location .getExtraInfo

Syntax:

java.lang.String getExtraInfo
(java.lang.String mimetype)

Description:

Returns extra information about the location. This method is
intended to provide location method specific extra informa-
tion that applications that are aware of the used location
method and information format are able to use.

A MIME type is used to identify the type of the extra infor-
mation when requesting it. It returns the extra information as
a String encoded according to format identified by the
MIME type.

When the MIME type i s "appl ica t ion/X-java- loca-
tion-nmea", the returned string shall be a valid sequence of
NMEA sentences formatted according to the syntax speci-
fied in the NMEA 0183 v3.1 specification. These sentences
should represent the set of NMEA sentences that are related
to this location at the time this location was created.

A sample returned str ing of getExtraInfo("applica-
tion/X-jsr179-location-nmea"):

$GPGGA,140234,26:08.76784,N,-80:15.22240,W,1,
6,,7.0,M,,

$GPGLL,26:08.76784,N,-80:15.22240,W,140234,A

When the MIME type is "application/X-java-location-lif",
the returned string shall contain an XML formatted docu-
ment containing the "pd" element defined in the LIF Mobile
Location Protocol TS 101 v3.0.0 as the root element of the
document.

A sample returned str ing of getExtraInfo("applica-
tion/X-jsr179-location-lif"). Note that the following string
has been formatted for display purposes:

lif:
<pd>
<time>1105044947940</time>
<shape>
<Point>
<coord><X>-23.67</X><Y>34.45</Y></coord>

</Point>
</shape>
<alt>456.0</alt>
<alt_acc>23.0</alt_acc>
<speed>20</speed>
<direction>120</direction>

</pd>

When the MIME type is "text/plain", the returned string shall
contain textual extra information that can be displayed to the
end user.

Method:
Location.getLocationMethod

Syntax:

int getLocationMethod()

Description:

Returns information about the location method used. The re-
turned value is a bitwise combination (OR) of the method
technology, method type and assistance information. The
method technology values are defined as constant values
named MTE_* in this class, the method type values are
named MTY_* and assistance information values are named
MTA_*.

For example, if the location method used is device based,
network assisted Enhanced Observed Time Difference
(E-OTD), the following value would be returned:

0x00050002 (= MTY_TERMINALBASED | MTA_ASSISTED
| MTE_TIMEDIFFERENCE)

MTE_TIMEDIFFERENCE Location method Time
Difference for cellular /
terrestrial RF system (for
example, Enhanced
Observed Time
Difference (E-OTD) for
GSM)

MTE_TIMEOFARRIVAL Location method Time
of Arrival (TOA) for
cellular / terrestrial RF
system

MTY_NETWORKBASED Location method is of
type network based

MTY_TERMINALBASED Location method is of
type terminal based

Field Description

Volume 3, Issue 1 63 BlackBerry Developer Journal

If the location is determined by combining several location
technologies, the returned value may have several MTE_*
bits set.

If the used location method is unknown, the returned value
may have all the bits set to zero.

Only bits that have defined constants within this class are al-
lowed to be used. Other bits are reserved and must be set to
0.

Method:
Location.getQualifiedCoordinates

Syntax:

QualifiedCoordinates getQualifiedCoordinates()

Description:

Returns the coordinates of this location and their accuracy,
or null if not known.

Method:
Location.getSpeed

Syntax:

float getSpeed()

Description:

Returns the device’s current ground speed in meters per sec-
ond (m/s) at the time of measurement, or Float.NaN if the
speed is not known. The speed is always a non-negative val-
ue. Note that unlike the coordinates, speed does not have an
associated accuracy because the methods used to determine
the speed typically are not able to indicate the accuracy.

Method:
Location.getTimestamp

Syntax:

long getTimestamp()

Description:

Returns the time stamp at which the data was collected. This
timestamp should represent the point in time when the mea-
surements were made. The time returned is the local device
time in milliseconds using the same clock and same time
representation as System.currentTimeMillis().

Method:
Location.isValid

Syntax:

boolean isValid()

Description:

Returns whether this Location instance represents a valid lo-
cation with coordinates or an invalid one where all the data,
especially the latitude and longitude coordinates, may not be
present.

A valid Location object contains valid coordinates whereas
an invalid Location object may not contain valid coordinates
but may contain other information via the getExtraInfo()
method to provide information on it was not possible to pro-
vide a valid Location object.

This method returns a boolean value with true indicating that
this Location instance is valid and false indicating an invalid
Location instance

Class: LocationProvider

This is the starting point for applications using this API and
represents a source of the location information. A Location-
Provider represents a location-providing module, generating
Locations.

Applications obtain LocationProvider instances (classes im-
plementing the actual functionality by extending this abstract
class) by calling the factory method. It is the responsibility
of the implementation to return the correct LocationProvid-
er-derived object.

Applications that need to specify criteria for the location pro-
vider selection, must first create a Criteria object, and pass it
to the factory method. The methods that access the location
related information shall throw SecurityException if the ap-
plication does not have the relevant permission to access the
location information.

RIM Implementation Note
Textual address is not supported. If an application invokes
LocationProvider.getInstance(criteria) with a Criteria in-
stance that requires AddressInfo, it returns null.

AVAILABLE

• Availability status code: the location provider is
available

OUT_OF_SERVICE

• Availability status code: the location provider is
permanently unavailable. Permanent unavailability
means that the method is unavailable and the
implementation is not able to expect that this situation
would change in the near future. An example is when
using a location method implemented in an external
device and the external device is detached.

TEMPORARILY_UNAVAILABLE

• Availability status code: the location provider is
temporarily unavailable. Temporary unavailability
means that the method is unavailable due to reasons that
can be expected to possibly change in the future and the
provider to become available. An example is not being
able to receive the signal because the signal used by the
location method is currently being obstructed, e.g. when
deep inside a building for satellite based methods.
However, a very short transient obstruction of the signal
should not cause the provider to toggle quickly between
TEMPORARILY_UNAVAILABLE and AVAILABLE

Volume 3, Issue 1 64 BlackBerry Developer Journal

Constructor
protected LocationProvider()

Empty constructor to help implementations and extensions.
This is not intended to be used by applications. Applications
should not make subclasses of this class and invoke this con-
structor from the subclass.

Method:
LocationProvider.addProximityListener

Syntax:

static void addProximityListener
(
ProximityListener listener,
Coordinates coordinates,
float proximityRadius

)

Description:

Adds a ProximityListener for updates when proximity to the
specified coordinates is detected.

If this method is called with a ProximityListener that is al-
ready registered, the registration to the specified coordinates
is added in addition to the set of coordinates it has been pre-
viously registered for. A single listener can handle events for
multiple sets of coordinates.

If the current location is known to be within the proximity
radius of the specified coordinates in meters, the listener
shall be called immediately.

Detecting the proximity to the defined coordinates is done on
a best effort basis. Due to the limitations of the methods used
to implement this, there are no guarantees that the proximity
is always detected; especially in situations where the device
briefly enters the proximity area and exits it shortly after-
wards, it is possible that it will be missed. It is optional to
provide this feature as it may not be reasonably implement-
able with all methods used to implement this API.

If the implementation is capable of supporting the proximity
monitoring and has resources to add the new listener and co-
ordinates to be monitored but the monitoring can't be cur-
rently done due to the current state of the method used to
implement it, this method shall succeeed and the monitoring-
StateChanged method of the listener shall be immediately
called to notify that the monitoring is not active currently.

This method throws:

javax.microedition.location.LocationException

• The platform does not have resources to add a new
listener and coordinates to be monitored or does not
support proximity monitoring at all

java.lang.IllegalArgumentException

• The proximity radius is 0 or negative* or Float.NaN

java.lang.NullPointerException

• The listener or coordinates parameter is null

java.lang.SecurityException

• The application does not have the permission to register
a proximity listener

Method:
LocationProvider.getInstance

Syntax:

static LocationProvider getInstance
(Criteria criteria)

Description:

This factory method is used to get an actual LocationProvid-
er implementation based on the defined criteria. Pass null if
the default provider is requested. If no concrete LocationPro-
vider could be created that typically can match the defined
criteria but there are other location providers not meeting the
criteria that could be returned for a more relaxed criteria,
null is returned to indicate this. The LocationException is
thrown, if all supported location providers are out of service.

A LocationProvider instance is returned if there is a location
provider meeting the criteria in either the available or tempo-
rarily unavailable state. If a LocationProvider meeting the
criteria can be supported but is currently out of service, it
shall not be returned.

When this method is called with a Criteria that has all fields
set to the default values (i.e. the least restrictive criteria pos-
sible), it will return a LocationProvider if there is any pro-
vider that isn't in the out of service state. Passing null as the
parameter is equal to passing a Criteria that has all fields set
to the default values, i.e. the least restrictive set of criteria.

This method only makes the selection of the provider based
on the criteria and is intended to return it quickly to the ap-
plication. Any possible initialization of the provider is done
at an implementation dependent time and must not block the
call to this method.

This method may return the same LocationProvider instance
as has been returned previously from this method to the call-
ing application, if the same instance can be used to fulfil
both defined criteria. Note that there can be only one Loca-
tionListener associated with a LocationProvider instance.

This method throws javax.microedition.location.Location-
Exception if all LocationProviders are unavailable.

Method:
LocationProvider.getLastKnownLocation

Syntax:

static Location getLastKnownLocation()

Description:

Returns the latest known location. This is the best estimate
for the previously known location. null is returned if there
isn’t any previous location information.

Volume 3, Issue 1 65 BlackBerry Developer Journal

Applications can use this method to obtain the last known lo-
cation and check the timestamp and other fields to determine
if this is recent enough and good enough for the application
to use without needing to make a new request for the current
location.

This method throws java.lang.SecurityException if the call-
ing application does not have a permission to query the loca-
tion information.

Method:
LocationProvider.getLocation

Syntax:

abstract Location getLocation(int timeout)

Description:

Retrieves a Location with the constraints given by the Crite-
ria associated with this class. If no result could be retrieved,
a LocationException is thrown. If the location can't be deter-
mined within the timeout period specified in the parameter,
the method shall throw a LocationException.

If the provider is temporarily unavailable, the device will
wait and try to obtain the location until the timeout expires.
If the provider is permanently unavailable, then the Loca-
tionException is thrown immediately.

Note that the individual Location returned might not fulfill
exactly the criteria used for selecting this LocationProvider.
The Criteria is used to select a location provider that typical-
ly is able to meet the defined criteria, but not necessarily for
every individual location measurement.

The single parameter passed is a timeout value in seconds. -1
is used to indicate that a default timeout value for this pro-
vider should be used.

This method throws:

javax.microedition.location.LocationException

• The location couldn't be retrieved or if the timeout
period expired

java.lang.InterruptedException

• The operation is interrupted by calling reset() from
another thread

java.lang.SecurityException

• The calling application does not have a permission to
query the location information

java.lang.IllegalArgumentException

• The timeout == 0 or timeout < -1

Method:
LocationProvider.getState

Syntax:

abstract int getState()

Description:

Returns the current state of this LocationProvider. The return
value shall be one of the availability status code constants
defined in this class.

Method:
LocationProvider.removeProximityListener

Syntax:

static void removeProximityListener
(ProximityListener listener)

Description:

Removes a ProximityListener from the list of recipients for
updates. If the specified listener is not registered or if the pa-
rameter is null, this method silently returns with no action.

Method:
LocationProvider.reset

Syntax:

abstract void reset()

Description:

Resets the LocationProvider.

All pending synchronous location requests will be aborted
and any blocked getLocation method calls will terminate
with InterruptedException.

Applications can use this method e.g. when exiting to have
its threads freed from blocking synchronous operations.

Method:
LocationProvider.setLocationListener

Syntax:

abstract void setLocationListener
(
LocationListener listener,
int interval,
int timeout,
int maxAge

)

Description:

Adds a LocationListener for updates at the defined interval.
The listener will be called with updated location at the de-
fined interval. The listener also gets updates when the avail-
ablilty state of the LocationProvider changes.

Passing an interval of -1 selects the default interval which is
dependent on the location method used. Passing an interval
of 0 registers the listener to only receive provider status up-
dates and not location updates at all.

Only one listener can be registered with each LocationPro-
vider instance. Setting the listener replaces any possibly pre-
viously set listener. Setting the listener to null cancels the
registration of any previously set listener.

Volume 3, Issue 1 66 BlackBerry Developer Journal

The first location result will be obtained when the listener is
registered and will provide the location to the listener as
soon as it is available. Subsequent location updates will hap-
pen at the defined interval after the first one. If the specified
update interval is smaller than the time it takes to obtain the
first result, the listener shall receive location updates with in-
valid Locations at the defined interval until the first location
result is available.

The timeout parameter determines a timeout that is used if
it's not possible to obtain a new location result when the up-
date is scheduled to be provided. This timeout value indi-
cates how many seconds the update is allowed to be
provided late compared to the defined interval. If it's not pos-
sible to get a new location result (interval + timeout) seconds
after the previous update, the update will be made and an in-
valid Location instance is returned. This is also done if the
reason for the inability to obtain a new location result is due
to the provider being temporarily unavailable or out of ser-
vice. For example, if the interval is 60 seconds and the time-
out is 10 seconds, the update must be delivered at most 70
seconds after the previous update and if no new location re-
sult is available by that time the update will be made with an
invalid Location instance.

The maxAge parameter defines how old the location result is
allowed to be provided when the update is made. This allows
the implementation to reuse location results if it has a recent
location result when the update is due to be delivered. This
parameter can only be used to indicate a larger value than the
normal time of obtaining a location result by a location
method. The normal time of obtaining the location result
means the time it takes normally to obtain the result when a
request is made. If the application specifies a time value that
is less than what can be realized with the used location meth-
od, the implementation shall provide as recent location re-
sults as are possible with the used location method. For
example, if the interval is 60 seconds, the maxAge is 20 sec-
onds and normal time to obtain the result is 10 seconds, the
implementation would normally start obtaining the result 50
seconds after the previous update. If there is a location result
otherwise available that is more recent than 40 seconds after
the previous update, then the maxAge setting to 20 seconds
allows to return this result and not start obtaining a new one.

Parameters:

listener

• The listener to be registered.

• If set to null the registration of any previously set
listener is cancelled.

interval

• The interval in seconds.

• -1 is used for the default interval of this provider.

• 0 is used to indicate that the application wants to receive
only provider status updates and not location updates at
all.

timeout

• Timeout value in seconds

• Must be greater than 0.

• The default timeout for this provider is used if the value
is -1.

• If the interval is -1 to indicate the default, the value of
this parameter has no effect and the default timeout for
this provider is used.

• This parameter has no effect if the interval is 0.

maxAge

• Maximum age of the returned location in seconds

• Must be greater than 0 or equal to -1 to indicate that the
default maximum age for this provider is used.

• If the interval is -1 to indicate the default, the value of
this parameter has no effect and the default maximum
age for this provider is used.

• This parameter has no effect if the interval is 0.

This method throws:

java.lang.IllegalArgumentException

• If interval < -1, or if (interval != -1) and (timeout >
interval or maxAge > interval or (timeout < 1 and
timeout != -1) or (maxAge < 1 and maxAge != -1))

java.lang.SecurityException

• The calling application does not have a permission to
query the location information

Class: Orientation

The Orientation class represents the physical orientation of
the device. Orientation is described by azimuth to north (the
horizontal pointing direction), pitch (the vertical elevation
angle) and roll (the rotation of the device around its own lon-
gitudinal axis).

The device providse the compass bearing, pitch and roll in-
formation. Most commonly, this class will be used to obtain
the current compass direction.

It is up to the device to define its own axes, but it is generally
recommended that the longitudinal axis is aligned with the
bottom-to-top direction of the screen. This means that the
pitch is positive when the top of the screen is up and the bot-
tom of the screen down (when roll is zero). The roll is posi-
tive when the device is tilted clockwise looking from the
direction of the bottom of the screen, i.e. when the left side
of the screen is up and the right side of the screen is down
(when pitch is zero).

No accuracy data is given for Orientation.

This class is only a container for the information. The con-
structor does not validate the parameters passed in but just
retains the values. The get* methods return the values passed
in the constructor.

Volume 3, Issue 1 67 BlackBerry Developer Journal

Constructor:

Orientation
(
float azimuth,
boolean isMagnetic,
float pitch,
float roll

)

Constructs a new Orientation object with the bearing, pitch
and roll parameters specified.

The values are expressed in degress using floating point val-
ues.

If the pitch or roll is undefined, the parameter should be giv-
en as Float.NaN.

Parameters:

bearing

• The bearing relative to true or magnetic north.

• Valid range: [0.0, 360.0)

isMagnetic

• true if the bearing is relative to the magnetic field or the
Earth

• false if the bearing is relative to true north and gravity

pitch

• The pitch of the terminal in degrees.

• Valid range: [-90.0, 90.0]

roll

• The roll of the terminal in degrees.

• Valid range: [-180.0, 180.0)

Method:
Orientation.getCompassAzimuth

Syntax:

float getCompassAzimuth()

Description:

Returns the device’s surface orientation in degrees relative to
either magnetic or true north. The value is always in the
range [0.0, 360.0) degrees. The isOrientationMagnetic()
method indicates whether the returned bearing is relative to
true north or magnetic north.

Method:
Orientation.getOrientation

Syntax:

static Orientation getOrientation()

Description:

Returns the device’s current orientation or null if it can’t be
determined.

This method throws:

javax.microedition.location.LocationException

• The implementation does not support orientation
determination

java.lang.SecurityException

• The calling application does not have permission to
query the orientation

Method:
Orientation.getPitch

Syntax:

float getPitch()

Description:

Returns the device’s tilt in degrees defined as an angle in the
vertical plane orthogonal to the ground, and through the lon-
gitudinal axis of the device. The value is always in the range
[-90.0, 90.0] degrees, or Float.NaN if not available. A nega-
tive value means that the top of the device is pointing to-
wards the ground.

Method:
Orientation.getRoll

Syntax:

float getRoll()

Description:

Returns the device’s rotation in degrees around its own lon-
gitudinal axis, or Float.NaN if not available. The value is al-
ways in the range [-180.0, 180.0) degrees. A negative value
means that the device is orientated anti-clockwise from its
default orientation.

Method:
Orientation.isOrientationMagnetic

Syntax:

boolean isOrientationMagnetic()

Description:

Returns a boolean value that indicates whether this Orienta-
tion is relative to the magnetic field of the Earth or relative to
true north and gravity. If this method returns true, the com-
pass bearing and pitch are relative to the magnetic field of
the Earth. If this method returns false, the compass bearing is
relative to true north and pitch is relative to gravity.

Class: QualifiedCoordinates

The QualifiedCoordinates class represents coordinates as lat-
itude-longitude-altitude values that are associated with an
accuracy value.

Volume 3, Issue 1 68 BlackBerry Developer Journal

Fields inherited from class javax.microedition.location.Co-
ordinates:

• DD_MM

• DD_MM_SS

Constructor
QualifiedCoordinates
(
double latitude,
double longitude,
float altitude,
float horizontalAccuracy,
float verticalAccuracy

)

Constructs a new QualifiedCoordinates object with the val-
ues specified. The latitude and longitude parameters are ex-
pressed in degrees using floating point values. The degrees
are in decimal values (rather than minutes/seconds).

The coordinate values always apply to the WGS84 datum.

The Float.NaN value can be used for altitude to indicate that
altitude is not known.

Parameters:

latitude

• The latitude of the location.

• Valid range: [-90.0, 90.0]

longitude

• The longitude of the location.

• Valid range: [-180.0, 180.0)

altitude

• The altitude of the location in meters, defined as height
above WGS84 ellipsoid.

• Float.NaN can be used to indicate that altitude is not
known.

horizontalAccuracy

• The horizontal accuracy of this location result in meters.

• Float.NaN can be used to indicate that the accuracy is
not known.

• Must be greater or equal to 0.

verticalAccuracy

• The vertical accuracy of this location result in meters.

• Float.NaN can be used to indicate that the accuracy is
not known.

• Must be greater or equal to 0.

This method throws java.lang.IllegalArgumentException if
an input parameter is out of the valid range.

Method:
QualifiedCoordinates.getHorizontalAccuracy

Syntax:

float getHorizontalAccuracy()

Description:

Returns the horizontal accuracy of the location in meters
(1-sigma standard deviation). A value of Float.NaN means
the horizontal accuracy could not be determined.

The horizontal accuracy is the RMS (root mean square) of
east accuracy (latitudinal error in meters, 1-sigma standard
deviation), north accuracy (longitudinal error in meters,
1-sigma).

Method:
QualifiedCoordinates.getHorizontalAccuracy

Syntax:

float getVerticalAccuracy()

Description:

Returns the accuracy of the location in meters in vertical di-
rection (orthogonal to ellipsoid surface, 1-sigma standard de-
viation). A value of Float.NaN means the vertical accuracy
could not be determined.

Method:
QualifiedCoordinates.setHorizontalAccuracy

Syntax:

void setHorizontalAccuracy
(float horizontalAccuracy)

Description:

Sets the horizontal accuracy of the location in meters (1-sig-
ma standard deviation). Must be greater or equal to 0. A val-
ue of Float.NaN means the horizontal accuracy could not be
determined.

The horizontal accuracy is the RMS (root mean square) of
east accuracy (latitudinal error in meters, 1-sigma standard
deviation), north accuracy (longitudinal error in meters,
1-sigma).

Method:
QualifiedCoordinates.setVerticalAccuracy

Syntax:

void setVerticalAccuracy
(float verticalAccuracy)

Description:

Sets the accuracy of the location in meters in vertical direc-
tion (orthogonal to ellipsoid surface, 1-sigma standard devia-
tion). The number must be greater or equal to 0. A value of
Float.NaN means the vertical accuracy could not be deter-
mined.

Volume 3, Issue 1 69 BlackBerry Developer Journal

Exception: LandmarkException

The LandmarkException is thrown when an error related to
handling landmarks has occurred.

Constructors
LandmarkException()

• Constructs a LandmarkException with no detail
message.

LandmarkException(java.lang.String s)

• Constructs a LandmarkException with the specified
detail message.

Exception: LocationException

The LocationException is thrown when a location API spe-
cific error has occurred. The detailed conditions when this
exception is thrown are documented in the methods that
throw this exception.

Constructors
LocationException()

• Constructs a LocationException with no detail message.

LocationException(java.lang.String s)

• Constructs a LocationException with the specified
detail message.

In closing ...

It would be hard to beat the sample device and server-side
code that comes with the BlackBerry JDE v4.01 update. As
such, download and install the latest update, adjust the code
to reflect the server where you will deploy the sample server
component, compile then deploy the sample application on
your BlackBerry 7520 handheld. After that, compile and de-
ploy the GPS server sample, and give it a test spin.

Please email your comments, suggestions and editorial submissions to Editor@BlackBerryDeveloperJournal.com

Volume 3, Issue 1 70 BlackBerry Developer Journal

© 2006 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related marks, images and symbols are the exclusive
properties of Research In Motion Limited. RIM, Research In Motion, “Always On, Always Connected”, the “envelope in motion” symbol, BlackBerry
Enterprise Server, and BlackBerry are registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.

Adobe and PageMaker are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or oth er countries. The
Bluetooth word mark is owned by Bluetooth SIG, Inc. and any use of such marks by Research In Motion Limited is under license. Microsoft, Visual Basic,
Visual Studio and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Sun Mi-
crosystems, Java JavaScript, Java ME, J2SE, JVM, Java ME and Java EE are trademarks or registered trademark of Sun Microsystems, Inc. in the United
States and other countries. All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

The BlackBerry handheld and/or associated software are protected by copyright, international treaties and various patents, including one or more of the
following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470; 6,073,318; D,445,428; D,433,460; D,416,256. Other patents are registered or
pending in various countries around the world. Please visit www.rim.net/patents.shtml for a list of RIM [as hereinafter defined] patents.

This document is provided “as is” and Research In Motion Limited and its affiliated companies (“RIM”) assume no responsibility for any typographical,
technical or other inaccuracies in this document. RIM reserves the right to periodically change information that is contained in this document; however,
RIM makes no commitment to provide any such changes, updates, enhancements or other additions to this document to you in a timely manner or at all.
RIM MAKES NO REPRESENTATIONS, WARRANTIES, CONDITIONS OR COVENANTS, EITHER EXPRESS OR IMPLIED (INCLUDING
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OF FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, MERCHANTABILITY, DURABILITY, TITLE, OR RELATED TO THE PERFORMANCE OR NON-PERFORMANCE OF
ANY SOFTWARE REFERENCED HEREIN OR PERFORMANCE OF ANY SERVICES REFERENCED HEREIN). IN CONNECTION WITH YOUR
USE OF THIS DOCUMENTATION, NEITHER RIM NOR DIRECTORS, OFFICERS, EMPLOYEES OR CONSULTANTS SHALL BE LIABLE TO
YOU FOR ANY DAMAGES WHATSOEVER BE THEY DIRECT, ECONOMIC, COMMERCIAL, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR INDIRECT DAMAGES, EVEN IF RIM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING
WITHOUT LIMITATION, LOSS OF BUSINESS REVENUE OR EARNINGS, LOST DATA, DAMAGES CAUSED BY DELAYS, LOST PROFITS,
OR A FAILURE TO REALIZE EXPECTED SAVINGS.

This document might contain references to third party sources of information, hardware or software, products or services and/or third party web sites (col-
lectively the “Third-Party Information”). RIM does not control, and is not responsible for, any Third-Party Information, including, without limitation the
content, accuracy, copyright compliance, compatibility, performance, trustworthiness, legality, decency, links, or any other asp ect of Third-Party Informa-
tion. The inclusion of Third-Party Information in this document does not imply endorsement by RIM of the Third Party Information or the third party in
any way. Installation and use of Third Party Information with RIM's products and services may require one or more patent, tradem ark or copyright licenses
in order to avoid infringement of the intellectual property rights of others. Any dealings with Third Party Information, including, without limitation, com-
pliance with applicable licenses and terms and conditions, are solely between you and the third party. You are solely responsible for determining whether
such third party licenses are required and are responsible for acquiring any such licenses relating to Third Party Information. To the extent that such intel-
lectual property licenses may be required, RIM expressly recommends that you do not install or use Third Party Information until all such applicable li-
censes have been acquired by you or on your behalf. Your use of Third Party Information shall be governed by and subject to you agreeing to the terms of
the Third Party Information licenses. Any Third Party Information that is provided with RIM's products and services is provided “as is”. RIM makes no
representation, warranty or guarantee whatsoever in relation to the Third Party Information and RIM assumes no liability whatsoe ver in relation to the
Third Party Information even if RIM has been advised of the possibility of such damages or can anticipate such damages.

Certain features outlined in this document require a minimum version of BlackBerry Enterprise Server software, BlackBerry Deskto p Software, and/or
BlackBerry Handheld Software and may require additional development or third party products and/or services for access to corpor ate applications.

RIM does not claim ownership of the materials you provide to RIM in any way. By posting, uploading, inputting, providing or submitting your ma-
terial you warrant and represent that you own or otherwise control all of the rights to your material as described in this section including, without
limitation, all the rights necessary for you to provide, post, upload, input or submit the material. However, with the exception of your personal infor-
mation, by posting, uploading, inputting, providing or submitting any such materials, you agree to grant to RIM, and any necessary sublicensees, a
perpetual, non-exclusive, worldwide, royalty-free license to use your submitted materials in connection with the operation of its business, including,
without limitation, the rights to: produce, reproduce, publish, modify, post, distribute, broadcast, transmit, publicly display, publicly perform, trans-
late and reformat any portion, in whole or in part, your submitted material. No compensation will be paid with respect to the use by RIM or any nec-
essary licensee of your submitted material, as provided herein. RIM is under no obligation to post or use any material you may provide and RIM
may remove any such material at any time in its sole discretion. Notwithstanding the foregoing, any suggestions, improvements or modifications to
RIM products and services (“Enhancements”) made by you or anyone acting on your behalf, including your employees, will be the property of RIM
without any further consideration to you, whether or not such Enhancements are incorporated into RIM products and services.

By posting, uploading, inputting, providing or submitting any information to RIM, you consent to RIM's collection of such information, and with the
exception of personal information you agree to grant RIM and necessary sublicensees, permission to use such submitted information in connection
with the operation of the BlackBerry Developer Journal and its business, including, without limitation, the worldwide, royalty-free rights to: pro-
duce, reproduce, publish, modify, post, distribute, broadcast, transmit, publicly display, publicly perform, translate and reformat your submitted in-
formation.

By submitting personal information to Research In Motion Limited and/or its affiliates (“RIM”), you consent to the collection, use, and disclosure of
your personal information by RIM for the purposes of RIM’s internal use and for use in relation to the BlackBerry Developer Journal, all in accor-
dance with RIM’s privacy policy, which may be viewed at http://www.blackberry.com/legal/index.shtml.

NOTE

This document is provided for informational, non-commercial or personal use only and must not be produced, reproduced, published, modified, broad-
cast, posted or distributed in any form or medium whatsoever, in whole or in part. Any such production, reproduction, publishing , modification, broad-
cast, posting or distribution is a violation of Research In Motion Limited's exclusive copyright. Use for any other purpose is e xpressly prohibited by law,
and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum extent possible.

No Research In Motion Limited or BlackBerry logo, graphic, sound or image may be produced, reproduced, published, modified, broadcast, posted or
distributed unless expressly permitted in writing by Research In Motion Limited.

