Digital Investigation 8 (2012) 175-184

Contents lists available at SciVerse ScienceDirect I:;?thal
Investigat;fﬂ

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Acquisition and analysis of volatile memory from android devices

Joe Sylve?, Andrew CaseP, Lodovico Marziale®, Golden G. Richard **

@ Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA
b Digital Forensics Solutions, LLC, New Orleans, LA 70130, USA

ARTICLE INFO ABSTRACT

Article history:

Received 27 April 2011

Received in revised form 6 September 2011
Accepted 24 October 2011

The Android operating system for mobile phones, which is still relatively new, is rapidly
gaining market share, with dozens of smartphones and tablets either released or set to
be released. In this paper, we present the first methodology and toolset for acquisition
and deep analysis of volatile physical memory from Android devices. The paper
discusses some of the challenges in performing Android memory acquisition, discusses
our new kernel module for dumping memory, named dmd, and specifically addresses the
difficulties in developing device-independent acquisition tools. Our acquisition tool
Memory forensics supports dumping memory to either the SD on the phone or via the network. We also
Memory analysis present analysis of kernel structures using newly developed Volatility functionality. The
Linux results of this work illustrate the potential that deep memory analysis offers to digital
Mobile device forensics forensics investigators.

Keywords:
Android

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Android operating system now has a substantial
share of the mobile market, and is expected to lead the
market by the end of 2011 (Eweek, 2011). The mass
adoption of Android and its projected growth make it vital
that the forensics community be able to properly acquire
and analyze evidence from the platform. While a few
research efforts have discussed analysis of Android’s file
system and analysis of process memory, we are not aware
of any work to date that completely acquires physical
memory and subsequently performs a coherent analysis of
the acquired memory for Android devices. Physical
memory analysis is vital to investigations, since it contains
a wealth of information that is otherwise unrecoverable.
This evidence includes objects relating to both running
and terminated processes, open files, network activity,
memory mappings, and more. Lack of such information
can make certain investigative scenarios impossible, such
as when performing incident response or analyzing

* Corresponding author. Tel.: +1 504 280 6045.
E-mail address: golden@cs.uno.edu (G.G. Richard).

1742-2876/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/.diin.2011.10.003

advanced malware that does not interact with non-
volatile storage.

In this paper, we explore the technical issues associated
with acquiring physical memory captures from Android-
based devices as well as subsequent analysis of the data
acquired. We present a methodology for acquiring
complete memory captures from Android, code to analyze
kernel data structures, and scripts that allow analysis of
a number of userland and file system-based activities. We
believe that Android will continue to require future
forensics research and in order to make our results
immediately usable to researchers and investigators, we
have integrated support for Android memory analysis into
the Volatility Memory Analysis framework (Volatility,
2011). Since Volatility is already used extensively in real
investigations, to support research in memory forensics,
and in a number of training courses, we hope our results
will generate further interest in the Android platform.

2. Related work
The presented research encompasses a number of

related work areas as it includes acquisition of memory and
a number of analysis techniques.

mailto:golden@cs.uno.edu
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2011.10.003
http://dx.doi.org/10.1016/j.diin.2011.10.003

176 J. Sylve et al. / Digital Investigation 8 (2012) 175-184

2.1. Linux volatile memory analysis

In the last few years, there has been a substantial
amount of memory analysis research targeting Linux. The
first systems presented for this purpose were the FATKit
(Walters, 2006), (Burdach, 2004), and memparser (Betz,
2005). Inspired by the DFRWS 2008 challenge (DFRWS,
2008), additional efforts were made to extract forensically
relevant information from memory captures (e.g., Case
et al, 2008). Since then, a number of other research
projects have been presented that perform deep analysis of
Linux kernel data structures as well as userland informa-
tion (Case, 2011; Case et al., 2010a, 2010b; Kollar, 2010). The
result of these projects is the ability to gather numerous
objects and data structures relevant to forensics investi-
gations in an orderly manner. A shortcoming of these
projects, however, was their inability to properly handle
the vast number of Linux kernel versions and the large
number of widely used Linux distributions. Due to the
issues investigators face when attempting to analyze one of
a large number of Linux kernel versions, a number of recent
research projects have attempted to automatically build
kernel structure definitions through a combination of static
and dynamic analysis (Case et al., 2010a, 2010b; Cozzie
et al, 2008; Lin et al., 2010; Slowinska et al., 2011).There
has also been recent work by the Volatility developers to
automatically generate C kernel structure representations
for different Linux kernel versions using debugging infor-
mation, which is similar to how Volatility handles different
versions of the Windows kernel.

While the these projects were able to recover both
allocated and de-allocated instances of kernel structures,
many of them relied on either following references within
data structures or memory scanning using ad-hoc structure
signatures. The ability to accurately find data structures to
which all references are removed is required in order to
find completely freed objects. The problem with current
generation scanners, such as those discussed previously, is
that the signatures were created based on manual and
informal source code review by the project developers.
[llustrating serious problems with this approach, including
the ease in which malware can bypass such weak signa-
tures, were two publications that used virtual machine
introspection and formal methods to construct structure
signatures (Dolan-Gavitt et al., 2009; Lin et al., 2011). Using
the techniques presented in these publications, forensic
investigators are able to scan for instances of data struc-
tures with a degree of confidence, since malware is unable
to easily bypass the signatures and false negatives and false
positives will be minimal.

2.2. Linux memory acquisition

Traditionally, memory captures on Linux were acquired
by accessing the /dev/mem device, which contained a map
of the first gigabyte of RAM. This allowed acquisition of
896 MB of physical memory without the need to load code
into the kernel. This approach did not work for machines
with more than 896 MB of RAM. Due to security concerns,
the /dev/mem device has recently been disabled on all
major Linux distributions, as it allowed for reading and

writing of kernel memory. In order to capture all physical
memory, regardless of size, and to work around the loss of
the /dev/mem device, Ivor Kollar created fmem (Kollar,
2010), a loadable kernel module that creates a /dev/fimnem
device supporting memory capture. fmem has been used in
a number of incident response situations and is the defacto
Linux memory acquisition tool. Another tool similar to
fimem is the crash (Anderson, 2008) project by Redhat. For
reasons we discuss later, the fmem module does not work
on Android devices.

2.3. Android memory analysis

There are currently three projects that support varying
levels of Android memory analysis. The first project, vola-
tilitux (Girault, 2010), provides only limited analysis capa-
bilities, including enumeration of running processes,
memory maps, and open files, and does not provide
a method to acquire memory from the phone. Our tech-
niques provide both acquisition and analysis capabilities.

The second related work was published in DFRWS 2010
(Thing et al., 2010). This research project avoided the
technical issues with capturing physical memory on
Android (which we solve in this paper), by focusing on
specific, running processes, and using the ptrace function-
ality of the kernel to dump specific memory regions of
a process. The virtual memory captures are then analyzed
to discover evidence. While this is a good first step, many
important aspects of the Android device’s memory are not
analyzed, including in-kernel structures, networking
information, etc. Another concern is that the approach
requires memory to be extracted separately for each
process of interest, which requires a number of interactions
with the live system and potentially overwrites valuable
evidence. We concentrate instead on physical memory
acquisition and analysis, which provides a superset of the
information contained in the address spaces of individual
processes.

Finally, another tool that is capable of extracting process
memory is memfetch (Zalewski, 2002). This tool dumps
a running application’s address space, either on demand or
when faults (e.g., SIGSEGV) occur. memfetch is portable
across a variety of Linux distributions, including Android,
but cannot acquire physical memory.

3. Acquiring volatile memory

In this section we discuss memory acquisition for
Android and our discussion is broken into a number of
sections for readability. Section 3.1 explains how to prepare
a phone for memory acquisition, Section 3.2 discusses
issues with existing acquisition modules, and Section 3.3
discusses portability issues.

3.1. Preparing the phone

Preparation of the phone for memory acquisition
requires a number of steps, since Android does not support
a memory device that exposes physical memory and
furthermore does not provide APIs to support userland
memory acquisition applications. This means that

J. Sylve et al. / Digital Investigation 8 (2012) 175-184 177

acquisition of physical memory requires gaining root
privileges on the phone so that code can be loaded into the
OS kernel to read and export a copy of physical memory.
While not ideal, this procedure is commonplace when live
forensics analysis is performed on commodity operating
systems, virtually all of which have now removed or
disabled devices that expose physical memory (e.g., /dev/
mem, ||Device||PhysicalMemory). Unless Android adds the
ability to export memory directly from userland (which is
unlikely) or manufacturers include hardware that allows
for such access directly through DMA (e.g., FireWire, also
unlikely), loading code into the running kernel to dump
memory is the only method available to access privileged
memory and the memory of all running processes.

The first step in the preparation process, gaining root
privileges on an Android phone, commonly referred to as
“rooting”, is not difficult, as a number of methods exist that
allow elevation of a normal user process to root (user id 0)
access. Examples of these include “Rage against the Cage”
(Kramer, 2010) and a number of NULL pointer dereference
exploits (Zinx, 2009). There are valid concerns about using
privilege escalation exploits to obtain root privileges, and
an investigator should only use rooting techniques that
have been verified to work reliably on a particular phone
and furthermore, verified not to have undesirable conse-
quences, such as introduction of malicious code. A “rooting
toolkit” with verified functionality is therefore a useful
component of a live forensic investigator’s toolset, along
with proper acquisition tools. While this might seem like
a radical idea, the situation is not unique to Android
devices. For example, if an investigator must obtain a copy
of physical memory from a live desktop machine for which
no administrator privileges are available, privilege escala-
tion provides the only option for introducing kernel code to
facilitate memory dumping.

Once exploited, an Android process continues to
execute as root until closed, which provides a vector for
loading code into the kernel. The binary containing the
exploit can be transferred to the target phone in a number
of ways, but the most portable method to transfer files to
and from the phone is through the adb application that is
distributed with the Android SDK. adb wraps a host PC-to-
phone protocol that allows for transfer of files, execution of
commands, and other tasks. Once the exploit is transferred,
it can then be executed in the shell to gain root. Of course
the entire rooting process can be skipped on phones that
were previously rooted by their owner.

3.2. Issues with existing memory acquisition modules

The initial aim of the presented research project was
solely analysis of acquired memory. Upon starting the
research, it was discovered that existing Linux memory
acquisition modules were unusable against Android
devices. The first module tested was fimem, which is widely
used for acquisition on Intel-based machines. The basic
operation of fmem involves creation of a character device
/dev/fmem that supports read and seek operations backed
by physical memory. This allows dd and other similar
userland applications to read memory from the running
operating system. Internally fmem works by:

1. Obtaining the starting offset specified by the read
operation.

2. Checking that the page corresponding to this offset is
physical RAM and not part of a hardware device’s
address space.

3. Obtaining a pointer to the physical page associated with
the offset.

4, Writing the contents of the acquired page to the user-
land output buffer.

While attempting to use fmem, a number of issues were
discovered. First, the function used to implement step 2,
page_is_ram, does not exist on the ARM architecture. This
means that the investigator cannot simply specify the
entire memory range to be copied as the module would
attempt to read from memory-mapped hardware device
ranges, which could cause severe instability and potentially
crash the phone.

The second issue discovered was that the dd application
bundled with common Android ROMs does not handle file
offsets above 0x80000000 correctly. This is because the
Android dd uses 32-bit signed integers for offsets and
storing 0x80000000 causes a 32-bit signed integer over-
flow. It then uses a system call to interact with a kernel
function that expects a 64-bit signed integer. This means
the kernel function receives a sign-extended 64-bit integer,
which will obviously produces incorrect results. In the case
of 0x80000000, this transforms the address used by the
kernel function into OXFFFFFFFF80000000. This incorrect
handling of integers makes dd unusable for memory
acquisition on a number of Android devices.

Finally, during the testing phase described in Section 4,
it was discovered that fmem only recovers 80% of the
original memory of devices from which it acquires memory.
We believe this high percentage of overwritten memory
(20%) is due to the fact that fmem requires extensive
interaction with userland. Particularly when used with dd,
as is recommended by the fmem author, a context switch
and userland-to-kernel land copying of data must occur
thousands of times during the memory imaging operation.

The other kernel module for memory acquisition, crash,
faces the same issues with dd as it also exposes a device
driver to userland. This userland approach also creates the
same issues with overwriting excessive memory due to
frequent context switching.

3.3. Barriers to device-independent acquisition

One issue that affects all kernel modules for Android
phones, including our memory acquisition module, is
portability across a wide variety of phone models. Unfor-
tunately, loading kernel modules is a difficult task to
perform in a Kkernel version agnostic manner. When
attempting to load a kernel module, if module verification
is enabled, the kernel performs a number of sanity checks
to ensure that the module was compiled for the specific
version of the running kernel. If any of these checks fail,
then the kernel refuses to load the module. While module
verification is optional, every kernel we tested (see Table 1)
enabled it and there is no reason to believe that verification

178 J. Sylve et al. / Digital Investigation 8 (2012) 175-184

Table 1
Phones used as test platforms for our tools.
Model ROM Kernel version Config exported
HTC EVO 4G HW Rev: 0004 OMJ_EVO_2.2_Froyo_v4.0_odexed 2.6.32.15-g59b9%e50 #17 Yes
HTC EVO 4G HW Rev: 0003 Stock 2.6.32.17-gee557fd Yes
HTC EVO 4G HW Rev: 0003 Stock 2.6.35.10-gc0a661b Yes
Droid Eris Kaos Froyo 2.6.29-c77FF39d No
Droid 2 Stock 2.6.32.9-g462500f No
Android emulator Stock Goldfish 2.2 2.6.29 Yes

will be disabled on other Android phones. A bypass of the
sanity checks is very difficult, since kernel modules are
tagged with a number of pieces of information about the
kernel they were compiled against. While some of this is
superficial information, such as version information and
strings that might easily be changed to “trick” the kernel
into loading a module, the module also stores CRCs of
functions and structures that it requires. Before loading, the
kernel reads each symbol in the binary and attempts to
match its CRC against the corresponding code in the kernel.
Again, if this check fails, then the module does not load.
Without the CRC information for particular kernels, the
location of which is discussed shortly, successfully loading
a module that does not match the required kernel version is
extremely difficult, since it would require bruteforcing (on
the phone) the kernel CRC values for every symbol used by
the module.

To work around the issues related to version-generic
kernel modules, a popular root-only Android application,
No Dock, attempts to bypass many of the strict checking
features (Nodock, 2011). First, the application comes with
bare kernel modules compiled against a stock version of
each supported kernel for ARM. At load time it first uses
uname in order to determine the running kernel version
and which bare module it should attempt to load. Next, it
tries to read /dev/kmem, a file mapping kernel memory, in
order to locate the vermagic string. If it is able to read this
file and locate the string, it then patches the on-disk
module with it in order to satisfy the check. In order to
bypass CRC checks, No Dock assumes that by loading
a module compiled against the same base kernel that CRC
checks will pass. Unfortunately, this is not always the case
as functions can change between minor versions and this
issue is documented on the referenced page. Therefore No
Dock is able to handle a fairly large number of kernel
versions, but it can still fail in a number of ways. For
example, if /dev/kmem is not present, then the loader is
unable to read the correct version magic string. It will also
fail if any of the CRC checks fail. Ultimately, the No Dock
approach is promising to increase the number of supported
phones for a kernel module, but it is not perfect.

Creating a module for every kernel version that might
be deployed on an Android phone is therefore not a trivial
task. In order to compile a loadable kernel module,
a number of additional files are required, including the
kernel source for the installed kernel. While a number of
manufacturers release the kernel source for their deployed
kernel in order to comply with the GPL, distributors of
popular custom ROMs for rooted phones do not include the
kernel source with their releases. The lack of access to

kernel source also prevents simply bypassing the previ-
ously mentioned CRC checks, since the Modules.symvers
file, which contains the CRCs of all symbols, cannot be
obtained.

Module compilation also requires the kernel configu-
ration file (.config) that was used when the installed kernel
was compiled. Normally there are two ways to acquire this
file, the first being from within the kernel sources distrib-
uted by the kernel creator and the second from /proc/con-
fig.gz on the running kernel. Our research revealed that
while the kernel on some phones provides /proc/config.gz
(see Table 1), it is unavailable on others.

Due to these issues, further research is needed to make
a truly kernel version agnostic module. Support for stock
kernels on Android phones is fairly straightforward, but
procedures to safely bypass the kernel version checking
restrictions on custom kernels would have an immense
impact on module portability, both for our work and for
other useful kernel modules.

4. DMD

In this section we discuss our Android memory acqui-
sition module, named dmd, address memory dumping over
TCP and to an Android device’s SD card, and offer thoughts
on the forensic soundness of our approach.

4.1. The acquisition module

In order to support acquisition of kernel memory across
all Android devices, we have developed a kernel module
that acquires a copy of system RAM with minimal inter-
action from the investigator. To work around the issues
detailed in Section 3.2, our module, dmd, takes a different,
simpler, and less invasive approach to acquiring memory.
Our module works by:

1. Parsing the kernel’s iomem_resource structure to learn
the physical memory address ranges of system RAM.

2. Performing physical to virtual address translation for
each page of memory.

3. Reading all pages in each range and writing them to
either a file (typically on the device’s SD card) or a TCP
socket.

When loading the module, the investigator provides
either a directory path to copy the dump to on the host
device or a TCP port for the device to listen on. Physical
address range information is handled automatically in the

J. Sylve et al. / Digital Investigation 8 (2012) 175-184 179

kernel module. The memory dump is written directly from
the kernel to limit the amount of interaction with userspace
and in particular, to eliminate the need for userspace data
copying programs such as dd. This saves a substantial
number of system calls and other kernel activity that is
necessary when using userland tools such as dd and cat,
which must issue a read and write call for every block of
data requested via the memory device. The module also
attempts to avoid the use of kernel file system buffers and
network buffers in order to minimize the contamination of
volatile memory during the acquisition process.

4.2. Interacting with the developed module

To illustrate the use of the described module, we will
now walk through two examples of acquiring memory
from an Android device. We will first discuss the acquisi-
tion of memory over a TCP connection, followed by
a discussion of acquiring a memory dump via the phone’s
SD card. While these processes should be identical for all
Android devices, in our example we will use a rooted HTC
EVO 4G, a popular Android phone.

4.2.1. Acquisition of memory over TCP

The first step of the process is to copy the kernel module
to the phone’s SD card using adb. adb is the Android Debug
Bridge, which supports a number of interactions with an
Android device tethered via USB. We then use adb to setup
a port-forwarding tunnel from a TCP port on the device to
a TCP port on the local host. The use of adb for network
transfer eliminates the need to modify the networking
configuration on the device or introduce a wireless peer—all
network data is transferred via USB. For the example below,
we have chosen TCP port 4444. We then obtain a root shell
on the device by using adb and su. To accomplish this we run
the following commands with the phone plugged into our
computer and debugging enabled on the device.!

$ adb push dmd-evo.ko /sdcard/dmd. ko
$ adb forward tcp:4444 tcp:4444

$ adb shell

$ su

#

Memory acquisition over the TCP tunnel is then a two-
part process. First, the target device must listen on a spec-
ified TCP port and then we must connect to the device from
the host computer. When the socket is connected, the
kernel module will automatically send the acquired RAM
image to the host device. The module first sends a fixed-
size header, which lists the physical memory address
ranges for the device and their corresponding offsets in the
image. It then sends an image of each physical address
range concatenated together.

In the adb root shell we install our kernel module using
the insmod command. To instruct the module to dump
memory via TCP we set the path parameter to “tcp”,

! Enabling debugging involves a simple change in the phone’s settings.

followed by a colon and then the port number that adb is
forwarding. On our host computer we connect to this port
with netcat redirect output to a file. When the acquisition
process is complete, dmd will terminate the TCP
connection.

The following command loads the kernel module via
adb on the target Android device:

insmod dmd path=tcp:4444

On the host, the following command captures the
memory dump via TCP port 444 to the file “evo.dump”:

$ nc localhost 4444 > evo.dump

4.2.2. Acquisition of memory to the device’ SD card

In some cases, such as when the investigator wants to
make sure no network buffers are overwritten, disk-based
acquisition may be preferred to network acquisition. To
accommodate this situation, dmd provides the option to
write memory images to the device’s file system. On
Android, the logical place to write is the device’s SD card.

Since the SD card could potentially contain other relevant
evidence to the case, the investigator may wish to image the
SD card firstin order to save unallocated space. Unfortunately,
some Android phones, such as the HTC EVO 4G and the Droid
series, place the removable SD card either under or obstruc-
ted by the phone’s battery, making it impossible to remove
the SD card without powering off the phone (these phones
will power down if the battery is removed, even if they are
plugged into a power source!). For this reason, the investi-
gator needs to first image the SD card, and then subsequently
write the memory image to it. While this process violates the
typical “order of volatility” rule of thumb in forensic acqui-
sition, namely, obtaining the most volatile information first, it
is necessary to properly preserve all evidence.

Fortunately, imaging the SD card on an Android device
that will be subjected to live forensic analysis (including
memory dumping) does not require removal of the SD card.
Tethering the device to a Linux machine, for example, and
activating USB Storage exposes a /dev/sd? device that can be
imaging using traditional means (e.g., using dd on the Linux
box). Activating USB Storage mode unmounts the SD card
on the Android device, so a forensically valid image can be
obtained.

With USB Storage mode deactivated we copy the dmd
kernel module to the device using the same steps described
in the last section. When installing the module using
insmod, we set the path parameter to /sdcard to specify the
directory in which the dump should be placed:

$ insmod dmd path=/sdcard

Once the acquisition process is complete, we can power
down the phone, remove the SD card from the phone, and
transfer the memory dump to the examination machine. If
the phone cannot be powered down, adb can also be used
to transfer the memory dump to the investigator’s
machine.

180 J. Sylve et al. / Digital Investigation 8 (2012) 175-184

4.3. Testing

The developed kernel module was tested against
a number of Android phones. Table 1 lists these phones
with the model, ROM, and kernel version. Other Android
phones are similar, with minor differences in Kkernel
versions.

Since it would be infeasible to test every Android model
on the market and the goal of our effort is to provide
memory acquisition capabilities for all Android devices, the
module was designed to work as simply as possible. The
only functionality that the final version of the module relies
on is the ability to translate virtual to physical addresses,
the ability to write to files from the kernel, and the ability to
communicate over TCP. If any of those facilities were
broken, the operating system would not operate correctly
as these are basic operations necessary for proper opera-
tion of the phone. Because we use only basic operating
systems services in the dmd module, we are confident that
the module will work on all Android devices as well as
other architectures that support Linux.

Testing was performed using manual analysis of the
acquired memory capture as well as testing captures with
our developed Volatility functionality, which is discussed in
Section 5. All phones tested successfully allowed for
acquisition of memory with no observed side effects to
continued operation of the device.

4.4. Forensic soundness of acquisition approach

For the developed acquisition approach to be of use to
the forensic community, it must meet the basic standards
of forensic soundness. Adherence to these guidelines
determines if evidence will be admissible in court and
usable in other legal settings. While live forensics investi-
gation on any computer inevitably disturbs some volatile
data, just as a traditional forensics investigation of a murder
scene inevitably disturbs some characteristics of the crime
scene, careful steps can be made to minimize the impact.
We believe our approach meets basic forensic soundness
standards for a number of reasons. First, we attempt to
minimize the impact on the target device when trans-
ferring data to and from it. Second, only a USB connection
with the phone is needed for interaction. Once connected,
only a single binary (the kernel module) needs to be
transferred and executed to perform the acquisition. Third,
loading of the module requires a minimal footprint, as the
dmd module is very small (~70 KB) and requires very few
kernel functions to acquire memory. As explained previ-
ously, minimal interaction with userland is needed beyond
loading the module, since all reading and writing of data to
files or via the network is handled within the kernel. This
saves hundreds of system calls and other function invoca-
tions that would otherwise need to be performed.

To quantitatively test the soundness of our module we
turned to virtualization. The Android SDK ships with
a gemu-based emulator that runs the full Android stack all
the way down to the kernel. By launching the emulator
with the flags —qgemu -monitor stdio we are presented with
a command line interface that allows us to run commands
to interact with the emulator. The pmemsave command

pauses the execution of the guest operating system running
in the emulator, saves a dump of physical memory of the
guest operating system, and then continues execution of
the guest operating system. This essentially allows us to
capture a physical memory snapshot of a virtual Android
device. We then use this snapshot to establish “ground
truth” in our testing.

For our tests we repeatedly used pmemsave to take
snapshots of memory on the virtual Android device. When
the snapshot was finished we immediately started
a capture using dmd. We then compared the two images for
identical physical memory pages. Our average results for 10
runs of our tests are provided in Table 2.

We were also interested in comparing our results to
tools traditionally used in Linux memory acquisition,
namely fimem and dd. However, as we discussed in Section
3.2, fmem does not work properly on Android devices. We
modified fmem to work around the issues we described in
step 2 of the fmem acquisition process. Our modifications
were minimal and only handled how fmem determines if an
address points to physical RAM. These modifications
should not affect the soundness of the capture. Since the
Android emulator maps physical RAM starting at address 0,
the issues we described with dd do not play a factor in
acquiring memory from virtual devices (but remain prob-
lematic for real devices). We ran the same tests against the
modified fmem as we did with dmd. The results are also
recorded in Table 2.

512 MB RAM images collected using dmd were consis-
tently over 99% identical to the pmemsave snapshots. Since
the copying of the image takes time, which allows other
running processes to perturb memory during the capture,
we feel that this is a very reasonable result. When
compared to the modified fmem implementation dmd
shows on average significantly better results: about 99% of
pages are correctly captured versus about 80%. We believe
this supports our design decision to minimize interactions
with userland programs and eliminate the traditional
method of exposing a new memory device via a kernel
module and then using a userland program such as dd to
capture memory contents through this device. Based on our
design goals and the results of our testing, we believe that
the developed approach meets all the guidelines of
a forensically sound process.

5. Analyzing a memory capture

Once memory is successfully acquired from the phone,
detailed analysis is needed in order to extract information
in a repeatable and useful manner. In this section we
discuss code and methods we have developed that fully

Table 2
Average results from 10 runs of our testing procedure.

Method Total number Number of Percentage of
of pages identical pages identical pages

dmd (TCP) 131,072 130,365 99.46%

dmd (SD Card) 131,072 129,953 99.15%

fmem (SD Card) 131,072 105,080 80.17%

J. Sylve et al. / Digital Investigation 8 (2012) 175-184 181

reconstruct forensically relevant kernel and userland state
through memory analysis on Android devices.

5.1. ARM addressing

While a number of tools exist that are capable of
analyzing Linux memory dumps, all of them have been
focused on the Intel architecture due to its popularity. With
the rise of ARM as the leader in the mobile realm, under-
standing its architecture will become increasingly necessary
for forensics investigators. The main functionality necessary
to support ARM from a memory forensics perspective is the
ability to translate between virtual addresses and physical
addresses offline. This is necessary as memory captures
contains data exactly as it is physically laid out in RAM,
while symbols from debugging information and pointers
within data structures will correspond to virtual addresses.
Paging in ARM takes the form of a two-level paging struc-
ture that can support a maximum of 4 GB of virtual memory
in all currently released architectures.

5.2. Adding volatility support

In implementing our address translation capabilities, we
targeted a well-known project, the Volatility Memory
Analysis project. To generically support multiple hardware
architectures and memory acquisition file formats, Vola-
tility supports the notion of “address spaces”, which allow
for automatic handling of virtual address to physical offset
translations. To add ARM support to Volatility, we imple-
mented a Volatility “address space” for ARM, and verified its
accuracy against our testbed of devices as well as the
implementation in crash. Similar to other address space
implementations, besides just address translation, we also

cat /proc/iomem

02b00000-02efffft :
03700000-039fffff :
03700000-039fffft :
03a00000-03a3f£f£ft :
03b00000-03dfEEEE ¢
20000000-2e7f£f£fff :
20028000-20428fff :

2044a000-2058cal3

30000000-3bffffff :
a0000000-a001ffff :
a0000000-a001ffff :
a0200000-a0200fff :
a0300000-a0300fff :
a0400000-a0400fff :
a0500000-a0500fff :
: msm_hsusb
al200000-al200fff :
a9900000-a9900fff :
a9900000-a9900fff :
: mdp

a0800000-a0801000

aa200000-aaZefffrf
aa600000-aa600fff

support testing of particular page table bits as well as filling
in the address space with zeroes when requested pages are
not mapped. To obtain the initial page table directory value,
we rely on the analyzed phone’s System.map file to obtain
the address of the swapper process (pid 0), and then use that
information to obtain the initial memory management
structure (swapper->mm). This mm structure contains a pgd
member that reveals the virtual address of the initial page
directory (PGD). This paging information can then be used
to perform initial analysis and to find other valid PGDs.

An interesting challenge in the development of the
address space is that, unlike Intel, not all Android devices
start RAM mappings from physical address zero. This breaks
the assumption that all known memory forensics tools have,
which is that offset X of a memory capture file corresponds
to physical offset X in memory. To work around this issue
without major changes to Volatility, we made the developed
address space aware of the necessary physical offsets on
a per-phone basis, with this information provided auto-
matically by the dmd module in each memory dump. The
module determines the necessary offsets for acquiring all
physical RAM by reading the kernel’s iomem_resource
structure. This information is also made available in user-
land through the proc file system by reading /proc/iomem,
which we depict for a typical phone model in Fig. 1. With the
address space aware of the physical shifts that are necessary,
we can properly translate virtual addresses to physical
memory offsets for all ARM-based devices.

5.3. Using volatility plugins

Once the ARM address space translation was success-
fully implemented, we were able to leverage existing Linux
plugins within the Volatility framework to provide

msm_hdmi. 0
kgsl phys memory
kgsl

ram _console
msm_panel.(
System RAM
Kernel text
Kernel data
System RAM
kgsl reg memory
kgsl
msm_serial hs bcm.0
msm_sdcc. 1
msm_sdcc.2
msm_sdcc.3

spi base
msm_12c.0

msm i2c

msm _mddi .0

Fig. 1. Contents of /proc/iomem on an HTC EVO 4G, Hardware Revision 4.

182 J. Sylve et al. / Digital Investigation 8 (2012) 175-184

complete analysis capabilities for Android. Fig. 2a-c shows
output for a number of Volatility plugins run against an
HTC EVO memory dump captured by dmd:

Volatility also supports gathering of common memory
analysis information, such as memory maps, open files,
networking connections, and more. Beyond the existing

a

Volatility Linux functionality, we also developed a number
of plugins that will be useful to investigators. We plan on
releasing these plugins upon publication of this paper. The
first plugin developed was the linux_iomem plugin that
mimics the contents of the /proc/iomem file. This plugin
works by first obtaining the address of the iomem_resource

python volatility.py -f [memory capture path] --profile=android [plugin op-

tions] [plugin name]

b

python volatility.py -f /mnt/data/volimgs/androidmem --profile=android li-

nux_mount

Volatile Systems Volatility Framework 1.4 rcl

ro,relatime
rw,relatime

rw,relatime

/mnt/asec/com.rovio.angrybirds-1

ro,relatime,nosuid,nodev,noexec
rw,relatime

rw,relatime

ro,relatime

rw,relatime
rw,relatime,nosuid,nodev
rw,relatime
rw,relatime,nosuid,nodev,noexec

rw,relatime

/dev/block/mtdblock4 /system yaffs2
sysfs /sys sysfs
devpts /dev/pts devpts
/dev/block/dm-1

Vfat
proc /proc proc
none /dev/cpuctl cgroup
tmpfs /mnt/sdcard/.android secure

tmpfs
tmpfs /dev tmpfs
/dev/block/mtdblocké6 /data yaffs2
tmpfs /app-cache tmpfs
/dev/block/vold/179:1 /mnt/sdcard vfat
none /acct cgroup
tmpfs /mnt/asec tmpfs

rw,relatime

/dev/block/vold/179:1 /mnt/secure/asec/.android secure

Vfat rw,relatime,nosuid,nodev,noexec
/dev/block/mtdblock5 /cache yaffs2 rw,relatime,nosuid,nodev
/dev/block/dm-0 /mnt/asec/com.com2us.sliceit-1

Vfat ro,relatime,nosuid,nodev,noexec

(3

python volatility.py -f /mnt/data/volimgs/androidmem --profile=android
linux task_list psaux -p 1

python volatility.py —--profile=android -f /mnt/data/volimgs/android-full

linux task list psaux

Volatile Systems Volatility Framework 1.4 rcl

Arguments
init
[kthreadd]
[ksoftirgd/0]
[watchdog/0]

id

N W N =g

Fig. 2. a. Using Volatility against an Android memory capture. b. Listing the Android device’s mount points. c. Partial process listing (truncated because the

complete listing is quite long).

J. Sylve et al. / Digital Investigation 8 (2012) 175-184 183

structure, and then walking all of the children of each
parent resource. For the information gathered by this plu-
gin please refer to Fig. 1.

The second plugin developed, linux_acquire_proc_maps,
is able to selectively acquire memory mappings within
a specified userland process and write the corresponding
pages to output file(s). The functionality contained in this
plugin is a superset of the work presented in (Thing et al.,
2010) as it is able to 1) acquire arbitrary memory regions
from a specified process without requiring access to the
running process, and 2) handle attempted acquisition of
unmapped pages. This plugin works by taking the process
ID of the target process and the memory range of data to
acquire. It then walks the active process list and locates the
process of interest. After finding the process, it creates
a new address space with the PGD of the target process
(task->mm->pgd). Once this is complete, the plugin can
convert virtual addresses within the process to physical
offsets. To obtain the targeted memory regions, it breaks
the addresses requested into page-size aligned offsets and
then reads from the requested addresses in page-sized
chunks. All data read is then written to the output file(s)
specified by the user.

54. Testing

After acquiring a memory capture from the phones lis-
ted in Table 1, the captures were analyzed by the developed
Volatility code. This analysis code was tested in two phases.
First, the developed address space, the code responsible for
translating virtual to physical addresses, was tested using
addresses with a static translation. This is possible because
the Linux kernel identity maps the kernel and its data
starting at virtual address 0xcO000000 on 32-bit systems.
Knowing this, our test suite consisted of using the address
space’s virtual to physical function, vtop, and ensuring that
the proper physical offset was returned. For example, the
first check made is that a call to vtop with address
0xc0004000 returns a physical offset of 0x4000. Similar
calls are made for a number of statically mapped virtual
addresses.

Once the address space was capable of properly trans-
lating virtual addresses, we then tested the existing Vola-
tility Linux plugins as well as our own. Existing plugins
such as process listing, open file enumeration, and netstat
were tested to ensure that core parts of the kernel could be
properly analyzed. We then developed the three previously
described plugins. Each of these plugins was tested against
a known good set of data. For linux_iomem, this included
comparing results with the contents of /proc/iomem. For
linux_acquire_proc_maps, testing was done by first obtain-
ing specific process address mappings from the phone
using memfetch (Zalewski, 2002), and then acquiring the
same address range with the Volatility plugin. These
captures were then compared to ensure they contained the
same data.

6. Conclusions and future work

In this paper, we have presented methods that obtain
complete captures of volatile memory from Android

devices along with subsequent analysis of that data in
both userland and the kernel. To our knowledge, this is the
first published work on accurate physical memory acqui-
sition and deep memory analysis of the Android kernel’s
structures. The developed kernel analysis support allows
the popular Volatility framework to be used when
analyzing data, via our implementation of ARM-specific
support.

There are a number of areas of future work spawned by
the research we've described. The first is performing
Android-specific memory analysis against popular appli-
cations as well as the Dalvik virtual machine itself. Since
Dalvik controls all userspace applications, generic analysis
of its runtime virtual machine could support automated
analysis of all Android applications. This includes the
Phone, Contacts, MMS, and every application installable
through the Android Market.

The second area of future work, which is hampered the
issues discussed in Section 3, is developing a generic
kernel module that can be loaded into any Android kernel
without additional cross-compilation steps. Development
of this module presents no specific challenge with respect
to functionality, since no kernel version-specific facilities
are necessary to acquire and export memory, but bypass-
ing the kernel’s CRC checks (essentially, to indicate “trust
us—loading this module is OK”) without the correspond-
ing Modules.symvers appears to be very difficult. Despite
these difficulties, we are continuing to search for
a solution.

References

Anderson D. Crash. Available, http://people.redhat.com/anderson/crash_
whitepaper/; 2008.

Androidnothize NoDock - testing and compatibility. Available, http://sites.
google.com/site/androidnothize/no-dock/testing-comp; 2011.

Betz C. MemParser, http://sourceforge.net/projects/memparser/; 2005.

Burdach M. Idetect, http://forensic.seccure.net/tools/idetect.tar.gz; 2004.

Case, A. “De-anonymizing live CDs through physical memory analysis,”
presented at the Blackhat DC Security Conference, Washington D.C.,
2011.

Case A, et al. FACE: automated digital evidence discovery and correlation.
Digital Investigation 2008;5:565-75.

Case A, et al. Treasure and tragedy in kmem_cache mining for live
forensics investigation. Digital Investigation 2010a;7:541-7.

Case A, et al. Dynamic recreation of kernel data structures for live
forensics. Digital Investigation 2010b;7:532-40.

Cozzie, A., et al. “Digging for data structures.” Proceeding of 8th sympo-
sium on operating system design and implementation (OSDI'08),
2008.

DFRWS. Forensics challenge, www.dfrws.org/2008/challenge/index.shtml;
2008.

Dolan-Gavitt, B., et al. “Robust signatures for kernel data structures,” ACM
conference on computer and communications security, 2009.

EWeek. Android ships 33M smartphones to lead world: canalys. Available,
http://www.eweek.com/c/a/Mobile-and-Wireless/Android-Ships-
33M-Smartphones-to-Lead-World-Canalys-162803/; 2011.

Girault E. Volatilitux; 2010.

Kollar I. Forensic RAM dump image analyser. Prague: MASTERS, Depart-
ment of Software Engineering, Charles University; 2010a.

Kollar I. fmem. Available: http://hysteria.sk/ ~ niektO/foriana/fmem_current.
tgz; 2010.

Kramer S. Rage against the cage. Available, http://c-skills.blogspot.com/
2010/08/droid2.html; 2010.

Lin, Z., et al. “Automatic reverse engineering of data structures from
binary execution,” 17th annual network and distributed system
security symposium (NDSS), 2010.

Lin, Z., et al. “SigGraph: brute force scanning of kernel data structure
instances using graph-based signatures,” network and distributed
systems security symposium (NDSS), 2011.

http://people.redhat.com/anderson/crash_whitepaper/
http://people.redhat.com/anderson/crash_whitepaper/
http://sites.google.com/site/androidnothize/no-dock/testing-comp
http://sites.google.com/site/androidnothize/no-dock/testing-comp
http://sourceforge.net/projects/memparser/
http://forensic.seccure.net/tools/idetect.tar.gz
http://www.dfrws.org/2008/challenge/index.shtml
http://www.eweek.com/c/a/Mobile-and-Wireless/Android-Ships-33M-Smartphones-to-Lead-World-Canalys-162803/
http://www.eweek.com/c/a/Mobile-and-Wireless/Android-Ships-33M-Smartphones-to-Lead-World-Canalys-162803/
http://hysteria.sk/~niekt0/foriana/fmem_current.tgz
http://hysteria.sk/~niekt0/foriana/fmem_current.tgz
http://hysteria.sk/~niekt0/foriana/fmem_current.tgz
http://c-skills.blogspot.com/2010/08/droid2.html
http://c-skills.blogspot.com/2010/08/droid2.html

184

Slowinska, A., et al. “Howard: a dynamic excavator for reverse engi-
neering data structures,” 18th annual network & distributed system
security symposium (NDSS), 2011.

Thing VLL, et al. Live memory forensics of mobile phones. DFRWS;

2010.
Volatility. https://www.volatilesystems.com/default/volatility; 2011.

J. Sylve et al. / Digital Investigation 8 (2012) 175-184

Walters A. FATKit: Detecting malicious library injection and upping the
“anti”. Technical report. 4TF Research Laboratories; 2006.

Zalewski Michal. memfetch, http://lcamtuf.coredump.cx/soft/memfetch.
tgz; 2002.

Zinx. Linux Kernel 2.x sock_sendpage() local root exploit (Android
Edition). Available, http://www.exploit-db.com/exploits/9477/; 2009.

https://www.volatilesystems.com/default/volatility
http://lcamtuf.coredump.cx/soft/memfetch.tgz
http://lcamtuf.coredump.cx/soft/memfetch.tgz
http://www.exploit-db.com/exploits/9477/

	Acquisition and analysis of volatile memory from android devices
	1. Introduction
	2. Related work
	2.1. Linux volatile memory analysis
	2.2. Linux memory acquisition
	2.3. Android memory analysis

	3. Acquiring volatile memory
	3.1. Preparing the phone
	3.2. Issues with existing memory acquisition modules
	3.3. Barriers to device-independent acquisition

	4. DMD
	4.1. The acquisition module
	4.2. Interacting with the developed module
	4.2.1. Acquisition of memory over TCP
	4.2.2. Acquisition of memory to the device' SD card

	4.3. Testing
	4.4. Forensic soundness of acquisition approach

	5. Analyzing a memory capture
	5.1. ARM addressing
	5.2. Adding volatility support
	5.3. Using volatility plugins
	5.4. Testing

	6. Conclusions and future work
	References

